
Experiencing QuantumComputers

Masterpraktikum

Contact: Dr. H. Chau Nguyen and Prof. Otfried Gühne

Theoretical QuantumOptics Group
Department of Physics, University of Siegen

Email: chau.nguyen@uni-siegen.de and otfried.guehne@uni-siegen.de

Contents

Day 1: Getting used to coding in a quantum computer 3
1. Quantum computer: qubits, gates and circuits 3
2. The Qiskit interface 3
3. State tomography 7

Day 2: Implementing the Deutsch-Jozsa algorithm and error mitigation 9
4. The Deutsch–Jozsa algorithm 9
5. Inside the IBMQs, physical constraints, errors, mitigation 10

1

2 Experiencing the quantum computers

The tutorial will be continuously improved for better readability. Do check out for the
updated version at:

https://www.tp.nt.uni-siegen.de/+nguyen/index.html
Version October 10, 2023

This labcourse introduces students to the use of quantum computers. The labcourse consists
of two days working in the computer room with access to publicly available simulated and real
quantum computers. Students will learn how to write code to control and calibrate a quantum
computers. As an examples, we implement the Bell experiment and the Deutsch-Jozsa algorithm.

• Day 1: Getting used to coding in a quantum computer (basic coding, tomography)
• Day 2: Implementation of the Deutsch-Jozsa algorithm and error mitigation

https://www.tp.nt.uni-siegen.de/+nguyen/index.html

Day 1: Getting used to coding in a quantum computer

Background requirement
Please read thematerials provided in Section 1. Be sure that you are able to answer the following
questions (or completed the indicated task) before going into the lab.

(1) What is a qubit?
(2) What is a pure state and a mixed state?
(3) What does one mean by state tomography?
(4) What is the computational basis representation?
(5) What are the X,Y,Z, Hadamard, gates?
(6) What is the CNOT gate?
(7) What happens when a qubit is measured?
(8) What is a quantum circuit?
(9) Implement the python code in Section 2.3 [If you failed to install qiskit, you can use

the IBMQWebsite with an account]
(10) How does one carry out the tomography of a state?
(11) What is a Bell state?
(12) What is the setup of the Bell experiment with the singlet Bell state?

1. Quantum computer: qubits, gates and circuits

There are already quite several good introductions to the topics. Please read the following in-
troductory articles:

• N. David Mermin, ‘From Cbits to Qbits: Teaching computer scientists quantummechanics,’
Am. J. Phys.71, 23 (2003) [arXiv:quant-ph/0207118].
• S. M. Barnett, ‘Quantum information,’ Oxford University Press, Chap. 2, pp. 31-49.

2. The Qiskit interface

Qiskit can serve as a very simple frontend interface to a quantum computer backend (or a
simulated one). That means, among other features, qiskit allows one to build up a quantum
circuit and send it to a quantum computer (or a simulated one) for execution.

2.1. Install qiskit. It is also recommended that students try to installqiskit locally in their
computer for further learning. The installation in linux is straightforward following the instruc-
tions from qiskit at:

3

4 Experiencing the quantum computers

https://qiskit.org/documentation/stable/0.24/install.html

The basic steps are:
(1) Install anacoda
(2) Create and activate an environment in anacoda, here named TQO2023.
(3) Install qiskit
(4) Install jupyter notebook

For windows users, follow the guidelines here:
https://techglimpse.com/install-qiskit-on-windows-10-ibmq/

2.2. Startup. In the experiment, you are provided with a computer, where qiskit has been
installed. After starting the system, open your terminal. Go to the TQO folder andmake a new folder
with your group name and go inside the folder.

1 cd TQO

2 mkdir GROUPNAME

3 cd GROUPNAME

Thereafter activate the anacoda enviroment TQO2023 where qiskit was installed. Then open
the jupyter notebook.

1 conda activate TQO2023

2 jupyter notebook &

The webbrowser Firefox will be opened, redirecting you to the jupyter notebook. Choose new
notebook from the drop menu.

2.3. Building a circuit with qiskit. The best way to get used to qiskit is to follow a
simple example. The following simple example is adapted from the tutorial provided by qiskit.
Type the example into the jupyter notebook. Save it as Example.ipynb.

1 #BUILDING A CIRCUIT --------------------------------

2 #Importing circuit builder

3 from qiskit import QuantumCircuit

4

5 #Create a Quantum Circuit acting on 2 qubits and 2 cbits

6 qc = QuantumCircuit (2, 2);

7
8 #Add a H gate on qubit 0

9 qc.h(0);

10
11 #Add a CNOT gate on control qubit 0 and target qubit 1

12 qc.cx(0, 1);

13

14 #Measure the qbits and write to the classical bits

15 qc.measure ([0,1], [0,1]);

16

https://qiskit.org/documentation/stable/0.24/install.html
https://techglimpse.com/install-qiskit-on-windows-10-ibmq/
https://qiskit.org/documentation/tutorials/circuits/1_getting_started_with_qiskit.html

5 Experiencing the quantum computers

17 # Draw the circuit

18 qc.draw(’mpl’);

One should get:

2.4. Running the circuit in a simulator. To run the circuit, one �rst has to setup the back-
end. Here we learn to setup a simulator. Setting up the backend to be a real quantum computer
will be discussed later. Type the following codes into the next scope

1 #SETUP THE BACKEND AND TRANSLATOR ----------------

2 #Importing the simulator

3 from qiskit.providers.aer import QasmSimulator

4 # Use Aer’s qasm_simulator

5 backend = QasmSimulator ()

6
7 #Importing translator

8 from qiskit import transpile

9 #Compile the circuit so that the backend understands

10 qc_bin = transpile(qc , backend=backend)

11

12 #EXECUTION --------------------------------------

13 # Execute the circuit on the qasm simulator

14 qc_job = backend.run(qc_bin , shots =20000)

The last command typically sends the job to the backend. In general, the backend can be busy
(which is not the case here for the local simulator), then the job can be put in a queue waiting for
execution. The following commands query for the status of the job.

1 from qiskit.providers.jobstatus import JobStatus

2 print(qc_job.status ())

2.5. Obtain the results. Once the job is done, one can retrieve the results and proceed to
analysis.

1 # Grab results from the job

2 qc_result = qc_job.result ()

3 #LOADING AND VISUALISE THE RESULTS -------------

4 # Returns counts

5 qc_counts = qc_result.get_counts(qc_bin)

6 print("\nTotal counts are:",qc_counts)

6 Experiencing the quantum computers

2.6. Changing the backend to mimic an IBMQ. Unfortunately this year IBM has limited
the access to their quantum computers. It is hard to queue our small academical job on their com-
puters. Fortunately, there are options to simulate the real backends with qiskit.

We can take a backend, for example:
1 from qiskit.providers.fake_provider import FakeLima

2 backend = FakeLima ();

In many aspects, the fake backend mimics the real backend at IBMQwell. This also include all the
possible sources of noise in the operation of the device.

Next we need to compile the circuit constructed before to the machine code that the backend
understands:

1 from qiskit import transpile

2 qc_bin = transpile(qc , backend=backend)

And run the code as usual:
1 from qiskit.providers.jobstatus import JobStatus

2 qc_job = backend.run(qc_bin ,shots =20000)

3 print(qc_job.status ())

Tip: Save all the relevant codes to the Example.ipynb so that later you can reuse di�erent
paragraphs.

Experiment 1: TheHadamard gate. The following circuits prepare a qubit (initiated as |0〉),
acting a Hadamard gate before making a measurements in three di�erent direction, x, y and z.

Notice thatRα(ϕ) denote that rotation operator by angle ϕ around axis α = x, y, z. Explain why
the circuits implement the designed experiments. Write the codes to construct the circuits. Run
each of the circuits 5 times in a simulated quantum computer (say lima). Note the counts to your
report. Remark whether the results are reasonable.

Experiment 2: The Bell state and Bell experiment. Show that the following circuit prepare
the singlet Bell state

7 Experiencing the quantum computers

The following 4 circuits perform di�erent measurement settings on the prepared Bell’s state

Explain which measurements haven been simulated in terms of spin measurement directions two
spin-1/2 particles. Relate the setting to the CHSH inequality.

Write the code that constructs the circuits. Run the code 5 times in a simulated quantum com-
puter. Note the counts to your report. From the data, compute the value of the CHSH operator.
Does it violate the CHSH inequality?

3. State tomography

In an actual quantum computer, there are various sources of noise. The output of a circuitmay
not be exactly the theoretically expected one. We therefore want to characterise the output of the
circuit by means of state tomography. In this section, we learn how to carry out state tomography.

Let us consider a two-qubit state ρ, which can always be written as

ρ =
1

4

3∑
i,j=0

Θijσi ⊗ σj, (1)

where σi and σj are the Pauli matrices. So, in order to construct the density operator ρ, one only
has to measure the mean values

Θij = tr[ρ(σi ⊗ σj)]. (2)
We say we have a tomography of the state.

First we have to load the libraries like in Experiment 1. Then a library for state tomography:
1 # Tomography functions

2 from qiskit_experiments.library import StateTomography

Build a circuit as usual.
1 # Create the actual circuit

2 from qiskit import QuantumCircuit

3 qc = QuantumCircuit (2)

4 qc.h(0)

5 qc.cx(0,1)

We then use StateTomography to generate the list of circuits for state tomography
1 # Generate the state tomography circuits.

2 qc_tm = StateTomography(qc);

3 for c in qc_tm.circuits ():

4 print(c)

Look at and explain the outcomes.
One then only need to run the circuit in an appropriate backend:

8 Experiencing the quantum computers

1 # Execute

2 backend = FakeLima ();

3 qc_tm_bin= transpile(qc_tm.circuits (),backend=backend)

4 qc_job = backend.run(qc_tm_bin , shots =20000)

5 qc_job.result ().get_counts ()

Using the results, one can compute Θij and obtain an estimate ρ̂ for the original state.
To access the quality of the reconstructed state ρ̂ one can compute the so-called �delity. If the

target state ρ is pure, |ψ〉〈ψ|, the �delity is given by
F (ρ̂, |ψ〉) = 〈ψ| ρ̂|ψ〉. (3)

In all of our experiments, the target states are pure and this simple formula is valid.

Experiment 3: Tomography of the Bell state. Using the code that prepare a Bell state in
Experiment 2 and construct the tomography circuit set of the state. Reconstruct your state and
compare itwith the theoretical one using the �delity as the qualitymeasure. Repeat the experiments
10 times to have the statistics.

Experiment 4: Tomography of a general state. Consider the following circuit:

Write the code to implement the circuit and carry the tomography of the output state. Calculate
the state theoretically and compare it with the experiment results using the �delity as the quality
measure. Repeat the experiments 10 times to have the statistics.

Day 2: Implementing the Deutsch-Jozsa algorithm and error mitigation

Background requirement
Please review thematerial inDay 1 and read thematerials provided in Section 4 and be sure that
you are able to answer the following questions (or completed the indicated task) before going
into the lab.

(1) How does one write a circuit in qiskit?
(2) How does one carry out state tomography?
(3) What is the Deutsch-Jozsa problem?
(4) Explain the quantum algorithm for the Deutsch-Jozsa problem.
(5) Prove equation (5) for Deutsch-Jozsa problem with n = 1.

4. The Deutsch–Jozsa algorithm

We are given a hidden Boolean function f , which takes as input a string of bits, and returns
either 0 or 1, that is,

f : {0, 1}n → {0, 1} (4)
The property of the given Boolean function is that it is guaranteed to either be balanced or constant.
A constant function returns always 0 or always 1 for any input, while a balanced function returns
0 for exactly half of all inputs and 1 for the other half. Our task is to determine whether the given
function is balanced or constant.

Classically, this question can be answered by evaluate the function at least twice for the best
case, or 2n−1 + 1 for the worse case.

Quantummechanically, this question can be answered by a single run of the (quantum) func-
tion. The function ismodelled inquantummechanics by anoracle,whichmaps |x〉|y〉 → |x〉|y ⊕ f(x)〉.

The following circuit demonstrates the quantum algorithm1:

1Figure taken from qiskit tutorial.

9

10 Experiencing the quantum computers

When the output get x = 0, the function is constant, else it is balanced. To see that, one only
has to follow the de�nition of the gate and show that the end state of the x-register is given by

1

2n

2n−1∑
y=0

2n−1∑
x=0

(−1)f(x)(−1)x·y|y〉. (5)

A constant oracle is really simple. For example, the trivial circuit (no gate) outputs always 0
regardless of the inputs on the three qubits (can you think of a circuit that always output 1?). As
an example of an oracle that is balanced, we have the following circuit:

Write the full table of output in your report to verify that the oracle is indeed balanced.

Experiment 5: Implementing the Deutsch-Jozsa algorithm. In this experiment we imple-
ment the Deutsch-Jozsa algorithm to determine if an oracle acting on three qubits is classical or
balanced. Write the code to implement the following steps:

(1) Choose a real quantum computer backend with at least 4 qubits (3 input qubits and 1
output qubit). Checkout the physical constraints and errors.

(2) Create a 4 qubit register qr.
(3) Create a circuit qc.
(4) Write a function add constant oracle() that adds the constant oracle to a circuit qc.
(5) Write a function add balanced oracle() that adds the balanced oracle to a circuit qc.
(6) Write a function that coins a random number and call either add constant oracle()

or add balanced oracle() accordingly.
(7) Implement the Deutsch–Jozsa algorithm.
(8) Transpile the circuit, run and obtain the raw counts for |000〉 in the input register.

In your report, make a table recording the counts of 10 runs of the circuit with the simulated back-
end. Is the algorithm successful?

5. Inside the IBMQs, physical constraints, errors, mitigation

Now let get a bit more deeper physical insights into the computer. The following commands
allow one to visualise the lower level information of the backend.

11 Experiencing the quantum computers

1 from qiskit.visualization import *

2 backend = FakeLima ();

3 plot_gate_map(backend);

4 plot_error_map(backend);

One should get:

One characteristic of the currently availableNISQ is that they are noisy. As physicists, we now learn
about noise and how to control them (as much as we can).

A very important type of noise in currentNISQ is themeasurement readout noise. This means
that when ameasurement is made, the qubit is collapsed to state 0 or 1. However, whenwe actually
read them out (through the physical interaction), we might misread it; the outcome can be �ipped.

We are now to study this type of noise and its mitigation. To do so, we will have to go deeper
into the hardware behind the command we have learned.

In execution, it is important that the virtual gates are decomposed intophysical gates (supported
by the computer).

1 qc.decompose ().draw(output=’mpl’);

12 Experiencing the quantum computers

Because of the physical constraints of the actual computer, some gate may not be directly ex-
ecuted between certain pair of qubits. In this case, the swap gates are used to change the qubit
that contains information closer to each other; all these we do not see if we naively run the circuit
as above. In reality, the virtual qubits are mapped into the physical ones in away to reduce these
swapping.

Let us see an example how the the virtual qubits are layout in the the physical qubits of an actual
computer.

1 from qiskit import transpile

2 backend = FakeLima ();

3 qc_transpiled = transpile(qc, backend=backend ,layout_method=’trivial ’,

optimization_level =1)

4 from qiskit.visualization import plot_circuit_layout

5 plot_circuit_layout(qc_transpiled , backend)

Let us now study the measurement errors associated with the qubits.
1 # Import general libraries (needed for functions)

2 import numpy as np

3 import time

4

5 # Import Qiskit classes

13 Experiencing the quantum computers

6 from qiskit_experiments.library import LocalReadoutError ,

CorrelatedReadoutError

7 from qiskit.tools.visualization import plot_histogram

Construct the calibration circuits
1 backend=FakeLima ()

2 # Generate the calibration circuits

3 qubits =[0,1,2]

4 gcalib= CorrelatedReadoutError(qubits)

5 for c in gcalib.circuits ():

6 print(c)

Look at the output and explain what the circuits describe.
We then run the circuit and analyse the data:

1 #Transpile and execute:

2 gcalib_bin= transpile(gcalib.circuits (),backend=backend ,layout_method

= ’trivial ’,optimization_level =1)

3 calib_job = backend.run(gcalib_bin , shots =20000)

4 calib_result = job.result ()

This data will allows us to construct the so-called transition matrix of the form
Prob(sss|σσσ). (6)

where σσσ is the prepared state in the computational basis, and sss is the measured outcome. One see
that even when the state is prepare in the computational basis, due to the noise in themeasurement
process, the outcomes is not necessary deterministic.

This transition matrix then allows one the mitigate the distribution of the measurement out-
comes. Indeed, suppose a quantum state in principle generates distribution P (σσσ) upon measure-
ment in the computational basis. The read out process in the quantum computer would actual
gives a distributionQ(sss) given by

Q(sss) =
∑
σσσ

Prob(sss|σσσ)P (σσσ). (7)

In order to get the true distribution P (σσσ), one thus has to invert Prob(sss|σσσ) as a matrix and apply
ontoQ(sss) as a vector.

Experiment 6: The Bell experiment with error mitigation. Write a code that carry out
the Bell experiment. Run the code on a simulated quantum computer. Carry out themeasurement
error mitigation and computed the mitigated CHSH violation.

	Day 1: Getting used to coding in a quantum computer
	1. Quantum computer: qubits, gates and circuits
	2. The Qiskit interface
	3. State tomography

	Day 2: Implementing the Deutsch-Jozsa algorithm and error mitigation
	4. The Deutsch–Jozsa algorithm
	5. Inside the IBMQs, physical constraints, errors, mitigation

