Flavour Physik: Quo vadis?

Alexander Lenz

IPPP, Durham University

Inhaltsangabe

Motivation f ür Flavour Physik

- Suche nach dem Ursprung der Materie im Universum
- Suche nach Effekten neuer Physik (NP)
- Einschränkung von Modellen für neue Physik

Status Quo

- Ein kurze Geschichte der Flavour Physik
- Überprüfung unserer theoretischen Methoden
- Suche nach neuer Physik
- Die zweite Charm Revolution
- Zusammenfassung und Ausblick

Flavour Physik

Es gibt sechs Arten (=Flavours) von Quarks

 $\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix} \begin{pmatrix} q = +2/3 \\ q = -1/3 \end{pmatrix}$

- Proton $p = |uud\rangle$
- (Heavy) Flavour Physik beschreibt Hadronen mit einem charm- oder einem bottom-Quark

Bacchus, Rubens 1638-40

	$D^0 = (\bar{u}c)$	$D^+ = (\bar{d}c)$	$D_s^+ = (\bar{s}c)$	$\Lambda_c = (udc)$
Masse (GeV)	1.86491	1.8695	1.9690	2.28646
Lebensdauer (ps)	0.4101	1.040	0.500	0.200

	$B_d = (\bar{b}d)$	$B^+ = (\bar{b}u)$	$B_s = (\bar{b}s)$	$B_c^+ = (\bar{b}c)$	$\Lambda_b = (udb)$
Masse (GeV)	5.27955	5.27925	5.3667	6.2745	5.6194
Lebensdauer (ps)	1.519	1.641	1.516	0.452	1.429

Flavour Physik in den Nachrichten

- 17.5.2010 New York Times A new Clue to explain existence
- 19.5.2010 BBC News New Clue to anti-matter mystery
- 20.5.2010 Scientific American Fermilab finds new mechanism for matter's dominance over antimatter
- 20.5.2010 The Times Atom-smasher takes man closer to heart of matter
- 25.5.2010 Spiegel Neue Asymmetrie zwischen Materie und Antimaterie entdeckt
- 28.5.2010 Science Hints of greater matter-antimatter asymmetry challenge theorists
- 28.5.2010 Die Zeit Rätselhafte Asymmetrie
- 29.5.2010 Chicago Tribune Fermilab test throws off more matter than antimatter - and this matters

...

A new Clue to explain Existence

1005.2757 D0 (eingereicht am Sonntag, 16.5.2010) 249 Zitierungen

PHYSICAL REVIEW D **82,** 032001 (2010)

Evidence for an anomalous like-sign dimuon charge asymmetry

V. M. Abazov,³⁶ B. Abbott,⁷⁴ M. Abolins,⁶³ B. S. Acharya,²⁹ M. Adams,⁴⁹ T. Adams,⁴⁷ E. Aguilo,⁶ G. D. Alexeev,³⁶

We measure the charge asymmetry A of like-sign dimuon events in 6.1 fb⁻¹ of $p\bar{p}$ collisions recorded with the D0 detector at a center-of-mass energy $\sqrt{s} = 1.96$ TeV at the Fermilab Tevatron collider. From A, we extract the like-sign dimuon charge asymmetry in semileptonic *b*-hadron decays: $A_{sl}^b =$ -0.00957 ± 0.00251 (stat) ± 0.00146 (syst). This result differs by 3.2 standard deviations from the standard model prediction $A_{sl}^b(SM) = (-2.3^{+0.5}_{-0.6}) \times 10^{-4}$ and provides first evidence of anomalous *CP* violation in the mixing of neutral *B* mesons.

DOI: 10.1103/PhysRevD.82.032001

443 Zitierungen

- [1] A. Lenz and U. Nierste, J. High Energy Phys. 06 (2007) 072.
- [2] C. Amsler *et al.*, Phys. Lett. B **667**, 1 (2008), and 2009 partial update for the 2010 edition.

PACS numbers: 13.25.Hw, 11.30.Er, 14.40.Nd

- [15] V. M. Abazov *et al.* (D0 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 565, 463 (2006).
 [16] S. N. Ahmed *et al.*, arXiv:1005.0801 [Nucl. Instrum.
 - Methods Phys. Res. Sect. A (to be published)]; R.
- 17.5.'10 NYT: "A new clue to explain existence" ($69 \cdot 10^6$ Google Einträge)

■ 1106.6308: 9 fb⁻¹, $A_{sl}^b = (-0.787 \pm 0.172(stat) \pm 0.093(syst))\% \Rightarrow 3.9\sigma$

Motivation I

Motivation II - Baryonenasymmetrie

Symmetrische Anfangsbedingungen (Inflation: anfängliche Asymmetrie wird ausgewischt)

 $\Rightarrow N$ Materie = NAntimaterie

Suche nach Annihilationslinien von Antimaterie, Nukleosynthese, CMB,...

Motivation III - Baryonenasymmetrie

Suche nach Annihilationslinien von Antimaterie, Nukleosynthese, CMB,...

Blick

in den

Sternen-

himmel

Motivation IV - Baryonenasymmetrie

Es gibt Materie!!!

Motivation V - Baryonenasymmetrie

Suche nach Annihilationslinien von Antimaterie, Nukleosynthese, CMB,...

$$\eta_B = \frac{n_B - n_{\bar{B}}}{n_\gamma} \approx 6 \cdot 10^{-10}$$

Wie kann ein Materieüberschuss aus symmetrischen Anfangsbedingungen entstehen?

Sakharov 1967: Die fundamentalen Naturgesetze müssen mehrere Eigenschaften erfüllen u.a.

CP -Verletzung: 1964 **K**-Mesonen (NP 1980) 2000 B_d , 2011 D^0 ?, 2012 B^+ , 2013 B_s

Beinhaltet unsere fundamentale Teilchenphysiktheorie diese Eigenschaften?

Das Standardmodell der Teilchenphysik I

Elegante Beschreibung der Natur mit einer Präzision im Promillebereich

Universität Siegen

Materie (Spin 1/2, Fermionen, 3 Familien)

Quarks (alle WW)

$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix} \begin{pmatrix} q = +2/3 \\ q = -1/3 \end{pmatrix}$$

Leptonen (schwache und em WW)

$$\begin{pmatrix} \nu_e \\ e \end{pmatrix} \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix} \begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix} \begin{pmatrix} q = 0 \\ q = -1 \end{pmatrix}$$

Kräfte (Spin 1, Bosonen)

WW		M	R
Em	Photon γ	0	∞
Stark	Gluon g	0	$10^{-15}m$
Schwach	W^{\pm}, Z^0	100 GeV	$10^{-18}m$

 $\begin{array}{l} {\rm Proton} \ \equiv |uud\rangle, m_P = 1 {\rm GeV} \\ n \rightarrow p + e^- + \bar{\nu}_e \end{array} \end{array}$

Massenerzeugung: Higgsteilchen *h*: (Spin 0, Boson), 2012 am LHC von ATLAS und CMS entdeckt: $M_h = 125$ GeV

... Englert, Brout; Higgs; Guralnik, Hagen, Kibble; ...

Erfolge des Standardmodells (SM)

Das SM scheint nun vollständig zu sein - erster elekroschwacher Fit

Eberhardt et al = A.L., KIT, HU Berlin 1209.1101 see also GFitter 1209.2716

Gibt es CP-Verletzung im Standardmodell?

Die CKM-matrix beschreibt die Kopplung von Quarks an W^{\pm} -Bosonen

Die Amplitude dieses Zerfalles ist proportional zu

$$\frac{g_2}{2\sqrt{2}}V_{cb}^*\cdot\ldots\cdot\frac{g_2}{2\sqrt{2}}V_{cs}$$

Ein Imaginärteil der CKM Elemente ist gleichbedeutend zu CP Verletzung!

CKM Matrix

Fermionmassenerzeugung mittels Yukawa-Wechselwirkung

⇒ Masseneigenzustände der Quarks ungleich Flavoureigenzustände

Mischungsmatrix: CKM-Matrix per Konstruktion unitär

- 2 Familien: 1 reeller Parameter
- 3 Familien: 3 relle Parameter, 1 Phase

Beachte: imaginäre Kopplung = CP-Verletzung

1972 waren nur u,d und s-quarks bekannt Kobayashi und Maskawa postulierten sechs Quarks! 2008 NP

Offene Fragen im SM

Das SM ist extrem erfolgreich, aber es lässt sehr viele Fragen unbeantwortet:

- Was ist dunkle Materie?
- Was ist dunkle Energie?
- Wie quantisiert man Gravitation?
- Warum gibt es drei Teilchenfamilien?
- Wie entstand Materie im Universum? SM CP-Verletzung reicht nicht!

Fall des Phaeton Rubens 1604/5

- Suche nach neuer Physik:
- Theoretisch motiviert: "Model-building"
- Experimentell motiviert: direkte Suche nach neuen Effekten
- Phänomenologisch motiviert: Suche nach Abweichungen von präzisen SM Vorhersagen

Warum Flavourphysik?

CP Verletzung tritt bei Flavouränderung auf

- QCD unter Kontrolle: $\alpha_s(m_b) \approx 0.2$
 - Heavy Quark Expansion: $\Gamma = \Gamma_0 + \frac{\Lambda^2}{m_b^2}\Gamma_2 + \frac{\Lambda^3}{m_b^3}\Gamma_3 + ...$
- viele Prozesse die im SM sehr stark unterdrückt sind treten nur als Quantenkorrekturen auf: Flavor Changing Neutral Currents

■ Viele Experimente, z.B. LHCb, ATLAS, CMS; Super-Belle, Panda, LINAC, TLEP,...

Flavour Physik: Prä-LHC

- Generelle Bestätigung des CKM-Mechanismus
 - Mechanismus wird 2008 mit dem Nobelpreis ausgezeichnet
 - Übereinstimmung z.T. auch auf Ein-Schleifen Niveau z.B. $b \rightarrow s\gamma$
 - Höhere Genauigkeit ist dennoch notwendig, z.B. V_{td} und V_{ts} sind nicht direkt eingeschränkt

 $V_{u'b} > V_{ub}$ und/oder $V_{c'b} > V_{cb}$ ist noch nicht ausgeschlossen

Einige interessante Abweichungen vom CKM-Mechanismus

- Hinweise auf eine sehr große Phase in der *B*-Mischung: Dimuon Asymmetrie; $B_s \rightarrow J/\psi\phi$...
- CDF hatte Hinweise auf ein sehr grosses Verzweigunsverhältnis $B_s \rightarrow \mu \mu$
- Probleme mit $\sin 2\beta$ V_{ub} $B \rightarrow \tau \nu$

Die Erwartungen waren hoch, und dann...

Universität Siegen

14. Januar 2014 - p. 19

Sturz der Titanen: $B \rightarrow \tau \nu$

Neue Daten von Belle 1208.4678 bestätigen das SM (neue BaBar Daten?)

Sturz der Titanen Rubens 1637/8

Gibt es ein ähnliches Problem bei $B \rightarrow D^{(*)} \tau \nu$? BaBar 1205.5442 oder hadronische Unsicherheiten unterschätzt? Becirevic et al 1206.4977

Auch CDF **1301.7048** wurde nicht bestätigt ATLAS **1204.0735**, D0 **1301.4507**, CMS **1307.5025** und **LHCb 1307.5024**

$$Br(B_s \to \mu\mu) = 2.9^{+1.1}_{-1.0} \cdot 10^{-9} \quad (\text{LHCb}, 4.0\sigma, 3fb^{-1})$$
$$Br(B_s \to \mu\mu) = 3.0^{+1.0}_{-0.9} \cdot 10^{-9} \quad (\text{CMS}, 4.3\sigma, 25fb^{-1})$$

Perfekte Übereinstimmung mit der SM Vorhersage

 $Br(B_s \to \mu\mu) = 3.65 \pm 0.23 \cdot 10^{-9}$

Bobeth et al. 1311.0903

Sturz der Titanen Rubens 1637/8

Sturz der Titanen: Überblick

SM ist das Maß aller Dinge

• Viele Diskrepanzen sind verschwunden $B \rightarrow \tau \nu$, $B_s \rightarrow \mu \mu$, Φ_s , ...:

Eliminiert dies NP Modelle?

Absence of evidence is not evidence of absence

Stimmt nicht für das SM4, aber für entkoppelnde Theorien wie SUSY SUSY is not dead yet, but it is not showing any sign of life Ein grosser Teil des Parameterraumes wurde ausgeschlossen

Es gibt noch viel Platz für Effekte neuer Physik

- Experimentelle und theoretische Unsicherheiten lassen relativ viel Platz
- Interessante Ergebnisse im Charm-sektor
- Einige Diskrepanzen verbleiben, z.B.
 - *Vub*
 - A^b_{sl}
 - $\bullet B \to D^{(*)} \tau \nu$
 - $\bullet B \to K^{(*)} \mu \mu$
 - • •

Definitive Aussagen über NP Modelle

Wie man einem Modell für neue Physik wirklich den Garaus macht:

Lanzenstich Rubens 1620

Das SM4 (perturbative, chirale vierte Generation von Fermionen) wurde vielfach ausgeschlossen, aber immer aufgrund ungerechtfertigter Annahmen Ausnahmen: Kribs, Plehn, Tait, Spannowsky '07 Novikov, Okun, Rozanov, Vysotsky '00, '02,...

Flavour Effekte, elektroschwache Präzisionsobservablen, z.B. A.L. et al '09, '10; Buras et al '10; ...

Der letale Lanzenstich:

- Qualitativ: Djouadi, A.L. '12
- Quantitativ: A.L., KIT, HU Berlin '12

Kombinierte Betrachtung von Flavour, Higgs und elektro-schwachen Observablen ist essentiell!

Test unserer theoretischen Methoden

 $|M_{12}|$, $|\Gamma_{12}|$ und $\phi = \arg(-M_{12}/\Gamma_{12})$ beschreiben drei Observablen:

- Massendifferenz: $\Delta M := M_H M_L \approx 2|M_{12}|$ (virtuelle Teilchen in der Schleife) $|M_{12}|$: schwere Schleifenteilchen: t, SUSY, ...
- **Zerfallsratendifferenz:** $\Delta \Gamma := \Gamma_L \Gamma_H \approx 2|\Gamma_{12}| \cos \phi$ (reelle Teilchen in der Schleife) $|\Gamma_{12}|$: leichte Schleifenteilchen: u, c, ... (fast) keine NP!!!

Flavourspezifische/semileptonische CP Asymmetrien: Z.B. $B_q \rightarrow X l \nu$

$$a_{sl} \equiv a_{fs} = \frac{\Gamma(\overline{B}_q(t) \to f) - \Gamma(B_q(t) \to \overline{f})}{\Gamma(\overline{B}_q(t) \to f) + \Gamma(B_q(t) \to \overline{f})} = \left|\frac{\Gamma_{12}}{M_{12}}\right| \sin \phi$$

Massendifferenz: eine Operatorproduktentwicklung (OPE)

Theorie A.L., Nierste 1102.4274 vs. Experiment : HFAG 13

 $\Delta M_d = 0.543 \pm 0.091 \text{ ps}^{-1} \qquad \Delta M_d = 0.510 \pm 0.004 \text{ ps}^{-1}$ $\Delta M_s = 17.30 \pm 2.6 \text{ ps}^{-1} \qquad \Delta M_s = 17.69 \pm 0.08 \text{ ps}^{-1}$

- Perfekte Übereinstimmung, aber Raum f
 ür NP
- Wichtige Schranken f
 ür Unitarit
 ätsdreieck und NP Modelle
- **Dominante Unsicherheit = Gitter, QCD SR** e.g. **Gelhausen et al. 1305.5432**

Zerfallsratendifferenz: Zweite OPE = Heavy Quark Expansion (HQE)

$$\Gamma_{12} = \left(\frac{\Lambda}{m_b}\right)^3 \left(\Gamma_3^{(0)} + \frac{\alpha_s}{4\pi} \Gamma_3^{(1)} + \dots\right) + \left(\frac{\Lambda}{m_b}\right)^4 \left(\Gamma_4^{(0)} + \dots\right) + \left(\frac{\Lambda}{m_b}\right)^5 \left(\Gamma_5^{(0)} + \dots\right) + \dots$$

'96: Beneke, Buchalla; '98: Beneke, Buchalla, Greub, A.L., Nierste; '03: Beneke, Buchalla, A.L., Nierste; '03: Ciuchini, Franco, Lubicz, Mescia, Tarantino;

'06; '11: A.L., Nierste; '07 Badin, Gabianni, Petrov

Test unserer theoretischen Methoden

HQE wurde oft angezweifelt - basiert auf Quark Hadron Dualität

Bei $b \rightarrow c(\bar{c})$ Zerfällen ist der Energieübertrag klein \Rightarrow die Reihe könnte nicht konvergieren

- Mitte der 90er: Missing Charm puzzle $n_c^{\text{Exp.}} < n_c^{\text{SM}}, B_{sl}$
- Mitte der 90er: Λ_b lebt zu kurz, d.h. $\tau(\Lambda_b) \ll \tau(B_d) = 1.519$ ps
- Vor 2003: $\tau_{B_s}/\tau_{B_d} \approx 0.94 \neq 1$
- 2010/2011: Dimuon Asymmetrie ist zu groß

Theorieargumente für die HQE

- \Rightarrow Berechne Korrekturen in "allen Richtungen", um die Konvergenz zu testen
- \Rightarrow Test der HQE mittels Lebensdauern (keine NP Effekte erwartet)

Test unserer theoretischen Methoden

(Fast) alle Diskrepanzen sind verschwunden:

- '12: $n_c^{2011\text{PDG}} = 1.20 \pm 0.06$ vs. $n_c^{\text{SM}} = 1.23 \pm 0.08$ Krinner, A.L., Rauh 1305.5390
- $\blacksquare \text{HFAG '03 } \tau_{\Lambda_b} = 1.229 \pm 0.080 \text{ ps}^{-1} \longrightarrow \text{HFAG '13 } \tau_{\Lambda_b} = 1.429 \pm 0.024 \text{ ps}^{-1}$ Änderung um $2.5\sigma!$; (ATLAS: 1.45 ± 0.04 ps/CMS: 1.50 ± 0.06 ps/LHCb: 1.482 ± 0.022 ps)
- **HFAG 2013:** $\tau_{B_s}/\tau_{B_d} = 0.998 \pm 0.009$
- 2010/2011: Dimuon Asymmetrie ist zu groß Teste Γ_{12} mit $\Delta \Gamma_s$!

Theorieargumente für die HQE

⇒ Berechne Korrekturen in "allen Richtungen", um die Konvergenz zu testen

$$\Delta \Gamma_s = \Delta \Gamma_s^0 \left(1 + \delta^{\text{Lattice}} + \delta^{\text{QCD}} + \delta^{\text{HQE}} \right) \Rightarrow \text{passt!}$$

= 0.142 ps⁻¹ (1 - 0.14 - 0.06 - 0.19)

⇒ Test der HQE mittels Lebensdauern (keine NP Effekte erwartet) ⇒ $\tau(B^+)/\tau(B_d)$: Exp. = Theorie - innerhalb hadronischer Unsicherheiten

Messung von $\Delta \Gamma_s$!

Test unserer theoretischen Methoden

$$\Delta \Gamma_s^{\text{Exp}} = (0.081 \pm 0.011) \,\text{ps}^{-1}$$
$$\Delta \Gamma_s^{\text{SM}} = (0.087 \pm 0.021) \,\text{ps}^{-1}$$

HFAG 2013 A.L.,Nierste 1102.4274

Auslöschung nicht-perturbativer Unsicherheiten:

Dominante Unsicherheit = NNLO-QCD + Gitter, QCD-SR; z.B. Mannel et al. '07,'11

Wichtigstes Ergebnis?: HQE funktioniert auch für Γ_{12} !

- Dominiert durch $b \rightarrow c\bar{c}s$ Energieübertrag $M_{B_s} 2M_{D_s} \approx 1.4 \text{ GeV}$
- Keine große Verletzung der Quark Hadron Dualität: Streitpunkt für 35 Jahre

Genauigkeit der HQE? 30%? 10%?

- 1. Anwendung der HQE auf NP-sensitive Größen
- 2. Anwendung der HQE auf das Charmsystem?
- 3. Höhere experimentelle und theoretische Genauigkeit

Suche nach Neuer Physik I

HQE funktioniert! SM Vorhersagen: A.L., U. Nierste, 1102.4274; A.L. 1108.1218

$$\begin{aligned} a_{fs}^{s} &= (1.9 \pm 0.3) \cdot 10^{-5} & \phi_{s} &= 0.22^{\circ} \pm 0.06^{\circ} \\ a_{fs}^{d} &= -(4.1 \pm 0.6) \cdot 10^{-4} & \phi_{d} &= -4.3^{\circ} \pm 1.4^{\circ} \\ A_{sl}^{b} &= 0.406a_{sl}^{s} + 0.594a_{sl}^{d} &= (-2.3 \pm 0.4) \cdot 10^{-4} \\ \left| \frac{\Delta \Gamma_{d}}{\Gamma_{d}} \right| &= (4.2 \pm 0.8) \cdot 10^{-3} \end{aligned}$$

Ältere experimentelle Schranken:

$$\begin{array}{lll} \phi_{s} &=& -51.6^{\circ} \pm 12^{\circ} & (\text{A.L., Nierste, CKMfitter, 1008.1593}) \\ \left| \frac{\Delta \Gamma_{d}}{\Gamma_{d}} \right| &=& (15 \pm 18) \cdot 10^{-3} & (\text{HFAG 13}) \\ A^{b}_{sl} &=& -(7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3} & (\text{D0,1106.6308}) \end{array}$$

$$A^{b}_{sl}(Exp.)/A^{b}_{sl}(Theory) = \mathbf{34} & 3.9 - \sigma\text{-Effekt} \end{array}$$

(CP)

Suche nach Neuer Physik II

Modelunabhängige Analyse: A.L., Nierste, '06

$$\Gamma_{12,s} = \Gamma_{12,s}^{\mathrm{SM}}, \qquad M_{12,s} = M_{12,s}^{\mathrm{SM}} \cdot \Delta_s; \qquad \Delta_s |\Delta_s| e^{i\phi_s^{\Delta}}$$

$$\Delta M_s = 2|M_{12,s}^{\rm SM}| \cdot |\Delta_s|$$

$$\Delta \Gamma_s = 2|\Gamma_{12,s}| \cdot \cos\left(\phi_s^{\rm SM} + \phi_s^{\Delta}\right)$$

$$\frac{\Delta \Gamma_s}{\Delta M_s} = \frac{|\Gamma_{12,s}|}{|M_{12,s}^{\rm SM}|} \cdot \frac{\cos\left(\phi_s^{\rm SM} + \phi_s^{\Delta}\right)}{|\Delta_s|}$$

$$a_{fs}^s = \frac{|\Gamma_{12,s}|}{|M_{12,s}^{\rm SM}|} \cdot \frac{\sin\left(\phi_s^{\rm SM} + \phi_s^{\Delta}\right)}{|\Delta_s|}$$

$$\sin(\phi_s^{\rm SM}) \approx 1/240$$

Für $|\Delta_s| = 0.9$ und $\phi_s^{\Delta} = -\pi/4$ erhält man folgende Schranken in der komplexen Δ -Ebene:

Suche nach Neuer Physik III

Daten bis Sommer 2010 und keine Pinguine Fit von Δ_{a} und Δ_{c} A.L.. Nierste. CKMfitter 1008.1593

Kleinere Effekte Neuer Physik im B_d -system

Suche nach Neuer Physik IV

Daten bis Ende 2012 und keine Pinguine Fit von Δ_d **und** Δ_s ; **Aktualisierung von A.L.**, Nierste, CKMfitter 1203.0238v2

SM passt perfekt

Immer noch Platz f
ür NP

Dimuonasymmetrie ist zu groß A.L. 1205.1444

Neue Messungen f
ür die individuellen semileptonischen CP-Asymmetrien

a_{sl}^s	—	$-0.06 \pm 0.50 \pm 0.36\%$	LHCb 1308.1048
a_{sl}^s	=	$-1.12\pm0.74\pm0.17\%$	D0 1207.1769
a^d_{sl}	=	$0.68 \pm 0.45 \pm 0.14\%$	D0 1208.5813
a^d_{sl}	=	$0.06\pm0.17^{+0.38}_{-0.32}\%$	BaBar 1305.1575

Alle Werte sind mit dem SM konsistent aber auch mit einer deutlichen Abweichung davon mehr Daten dringend notwendig

Neue Interpretation der Dimuonasymmetrie Borissov, Hoeneisen 1303.0175

$$A_{sl}^b = C_d a_{sl}^d + C_s a_{sl}^s + C_\Gamma \frac{\Delta \Gamma_d}{\Gamma_d}$$

Bei $\Delta \Gamma_d$ ist noch viel Platz für NP!

Suche nach neuer Physik VI

Fits von $B_s \to \mu\mu$, $B \to K^{(*)}ll$, $b \to s\gamma$,... Beaujean, Bobeth, van Dyck - 1310.2478

Suche nach neuer Physik VII

Was haben wir aus den bisherigen NP Suchen gelernt?

- 1. Viele Observablen sehen SM-artig aus, z.B. $B_s \rightarrow \mu\mu$
- 2. Es gibt keine riesigen NP Effekte, z.B. $\phi_s \ll 45^\circ$ War das zu erwarten?
- 3. Große NP Effekte sind immer noch möglich, auch in $B_s \rightarrow \mu\mu, \phi_s$:-) Interessante Diskrepanzen auf dem 3 σ -Niveau
 - $\blacksquare B \to K^* \mu \mu$
 - $\blacksquare B \to D^{(*)} \tau \nu$
 - $\bullet a_{sl}^d, a_{sl}^s, \Delta \Gamma_d$
 - $\blacksquare V_{ub}$

• ... \Rightarrow NP ist schwieriger zu finden als erwartet

Höhere Genauigkeit in Experiment und Theorie notwendig

- Perturbative und hadronische Unsicherheiten müssen verringert werden
- Vernachlässigung von Pinguinen könnte nicht mehr gerechtfertigt sein A.L. '11

Die zweite CHARM Revolution I

D-mischungsrate ist groß (HFAG 2012)

$$\frac{\Delta M}{\Gamma} = 0.63^{+0.19}_{-0.20}\% \qquad \qquad \frac{\Delta \Gamma}{2\Gamma} = 0.75 \pm 0.12\%$$

Erste Messung mit $>5=9.3\sigma$ durch LHCb 1211.1230!

■ Direkte CP-Verletzung in hadronischen Charmzerfällen? (Naiv SM: 10⁻⁴)

 $\Delta A_{CP}^{dir} = -0.329 \pm 0.121\%$

LHCb; CDF; Belle

Die entscheidende Frage: Kann dieser Wert durch das SM beschrieben werden? HQE funktioniert bestens im B-sector \Rightarrow Anwendung auf Charm? Standardgegenargument: Energieübertrag ist viel zu klein, aber

$$m_{B_s} - 2m_{D_s} \approx 1.43 \text{ GeV} (\text{Impulsübertrag: } 3.5 \text{ GeV})$$

 $m_D - 2m_K \approx 0.9 \text{ GeV} (\text{Impulsübertrag: } 1.6 \text{ GeV})$
 $m_D - 2m_\pi \approx 1.6 \text{ GeV} (\text{Impulsübertrag: } 1.8 \text{ GeV})$

Die zweite Charm Revolution II

- '75-'78: Naive Abschätzungen (vor den ersten Daten): $\tau(D^+)/\tau(D^0) \approx 1$
- 79-'82: Naive Abschätzungen (nach den ersten sehr großen Werten)

 $\tau(D^+)/\tau(D^0) \approx 6...10$

- Systematische HQE Abschätzungen Voloshin, Shifman ('81,'85)
 - LO-QCD, 1/ N_c : $\tau(D^+)/\tau(D^0) \approx 2$ Bigi, Uraltsev ('92-...)
 - +NLO,+ $1/m_c$ A.L., Rauh; 1305.3588 hadronische Matrixelemente (ME) unbekannt!

- Vielversprechend: HQE könnte riesigen Lebensdauerunterschied erklären
- Hadronisch ME der 4-Quark Operatoren dringend benötigt

Dominante Unsicherheit: NNLO-QCD + Gitter, QCD-SR

Zusammenfassung

- **1. Theoretische Methoden funktionieren sehr gut**
- 2. Es gibt keine riesigen NP Effekte
- 3. Es gibt aber noch viel Platz für neue Effekte
- 4. In naher Zukunft gibt es viele neue, genaue Daten

Die nächsten Schritte:

- 1. Wie genau funktionieren unsere theoretischen Methoden?
- 2. Sehr präzise SM-Rechnungen erforderlich, um kleinere Effekte neuer Physik zu sehen
- 3. Bisher anerkannte Näherungen müssen überdacht werden
- 4. Neue Suchstrategien Observablen
- 5. Neue Theoriegeleitete Ideen a la SUSY?

Die Qual der Wahl

Das Urteil des Paris Rubens 1636

Ausblick I - Projektliste

- Präzisere SM Vorhersagen
 - Γ_{12}
 - ◆ *b*-Lebensdauern: Mesonen/Baryonen
 - ♦ c-Lebensdauern: Mesonen/Baryonen
 - Charm Mischungsobservablen
 - Exklusive b-Zerfälle
- Alternative Observablen f
 ür NP Suche
 - Inklusive b-Zerfälle
 - $\Delta \Gamma_d$
 - $\bullet \ B \to \tau \tau$
- Modell-unabhängige Schranken an NP
 - Neue Operatoren $bd\tau\tau$
 - ◆ *C*₁, *C*₂
- Model-building
 - 2HDM
 - Higgs Portale

Ausblick II - Projektliste

Präzisere SM Vorhersagen

- Γ_{12} : α_s^2 (Duhr), α_s/m_b , $1/m_b$ in QCD SR (Pecjak)
- **b**-Lebensdauern: Mesonen/Baryonen: α_s für $\tau(\Lambda_b)$, Gitter-matching
- *c*-Lebensdauern: Mesonen/Baryonen: Gitter Matching; a la Voloshin
- Charm Mischungsobservablen: HQE bis Dimension 12 (Nierste)
- Exklusive *b*-Zerfälle: Λ_b -Zerfälle
- Alternative Observablen f
 ür NP Suche
 - Inklusive *b*-Zerfälle: α_s (TUM), α_s^2 (Czarnecki), Monte Carlo (Krauss)
 - $\Delta \Gamma_d$: ATLAS, LHCb, Pecjak
 - $B \rightarrow \tau \tau$: LHCb, Pecjak
- Modell-unabhängige Schranken an NP
 - Neue Operatoren $bd\tau\tau$: Bobeth, Haisch, Pecjak
 - C_1 , C_2 : Bobeth, Haisch, Pecjak
- Model-building
 - 2HDM: Nierste, CKMfitter, Wiebusch
 - Higgs Portale: Khoze, Spannowsky, Wiebusch

Ausblick III vs. FOR 1873

- Präzisere SM Vorhersagen
 - Γ_{12}
 - ◆ *b*-Lebensdauern: Mesonen/Baryonen
 - ◆ *c*-Lebensdauern: Mesonen/Baryonen
 - Charm Mischungsobservablen
 - Exklusive b-Zerfälle
- Alternative Observablen f
 ür NP Suche
 - Inklusive b-Zerfälle
 - $\Delta \Gamma_d$
 - $\bullet \ B \to \tau \tau$
- Modell-unabhängige Schranken an NP
 - Neue Operatoren $bd\tau\tau$
 - ◆ C₁, C₂
- Model-building
 - 2HDM
 - Higgs Portale

*Precision HQE
*LCSR in QCD + Effective Theories
*Precision Prediction for
FCNC Decays
*QCD and Effective Theories for
Nonleptonic Decays
*New Physics and
Flavour Symmetries

Flavourphysik = A new clue to explain existence

nicht erwähnte Arbeiten

- Charm mixing (perturbative QCD)
 Bobrowski, Prill 0904.3971,1002.4794,1009.4545
 BES III, SuperB Fabriken, LHCb
- Nucleon-, N*-distribution amplitudes: (QCD sum rules) Braun, A.L., Wittmann, Lattice Group Regensburg 0112085, 0604050, 0902.3087, 0903.1723 JLAB, extend to Λ_b baryons
- Nucleon form factors: $N \rightarrow N, N \rightarrow \Delta, N \rightarrow N\pi, N \rightarrow N*$ (LCSR) Braun, Ivanov, A. L., Mahnke, Stein, A. Peters, G. Peters, Radyushkin, Wittmann; Lattice Group Regensburg 0112085, 0311082, 0510237, 0604050, 0611386, 0902.3087, 0903.1723 JLAB, extend to Λ_b baryons
- π , K-distribution amplitudes: (QCD sum rules) Ball, Braun, A.L. 0407282, 0603063, 0707.1201 e.g. $B \rightarrow K\pi, \pi\pi, ...$; (Super)B Fabriken, LHCb