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1 Introduction

Dear students,

I am very much looking forward to teach this course. My specialisation
is Heavy Flavour Physics - so obvioulsy not cosmology. But one of the main
motivations for my research field is to try to find out the origin of the matter-
antimatter asymmetry in the Universe. According to the Sakharov criteria
CP violation is a necessary ingredient of the fundamental laws of nature in
order to create a baryon asymmetry when starting from symmetric initial
conditions. The study of CP violation in heavy hadron decays is a main part
of my research.
Another connection of my research field to cosmology is the nature of dark
matter. Many physicists expect dark matter to consist of new elementary
particles, that will also couple to some extent to the known particles of the
Standard Model of Particle Physics. Decays of heavy hardons are also used
to find traces of tiny couplings between the SM sector and the dark sector.
After discusing with cosmologists from the ICC and with some of my col-
leagues at the IPPP and the Maths department, the idea is to present in
Cosmology 1 a basic introduction into the topic - the minimum every par-
ticle physicist should know. Therefore I will closely follow the book An
Introduction to Modern Cosmology of Andrew Liddle. You already had the
General Theory of Relativity Lecture taught by my colleagues from the Maths
department and you will have the more advanced Cosmology 2 lecture.
In case you want to contact me outside the lectures: my email address is
alexander.lenz@durham.ac.uk and my room number is OC121 in the ground
floor of the Ogden building (the building where also OC218 is located).
I will provide my lecture notes after the lecture on DUO - please let me know
about any misprints you find in the notes.
Again, I am looking forward to do this exciting expidition into modern Cos-
mology with you in the next four weeks.

Alexander Lenz
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2 Lecture 1: Overview

Mo 12.11.: Chapter 1, 2

2.1 The Cosmological Principle

A very brief history of the centre of the Universe:

• Ancient Greeks like Ptolemy: Earth is in the centre (epicycles).

• 1500s Copernicus: Sun is in the centre.

• Newton: empirical science ⇒ Theory of Gravitation.

• 1700s William and Caroline Herschel: Solar system in the centre of the
Milky Way.

• Early 1900s Shapley: sun away from the centre of the Milky Way; but
Milky way in the centre of the Universe.

• 1952 Baade: Milky way is just one among billions of other galaxies.

Modern view: On very large scales (e.g. a million galaxies and above) the
Universe is the same everywhere.
This cosmological principle is the main pillar of the Big Bang theory.
It is of course violated on smaller scales!
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2.2 Observation

2.2.1 Observational Channels

Astrophysical observations are done via:

• Since ancient times: visible light.

• Since the 19th century: full electro-magnetic spectrum
radio waves, microwaves, IR, visible light, UV, x-ray, gamma.

Both ground based and satellite.

• Recently also:

– From 1909 onwards (1912 Hess): Cosmic rays.

– 1987: Neutrinos SN1987A (Kamiokande II detected 12 antineu-
trinos; IMB, 8 antineutrinos; and Baksan, 5 antineutrinos).

– 2016: Gravitational waves - LIGO 5 events so far:
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https://www.ligo.caltech.edu/page/detection-companion-papers

2.2.2 Observations in the Visible Spectrum

What did we learn from observations in the visible spectrum?

Stars: create energy by nuclear fusion, sun is a typical star, solar mass M� =
2 ·1030 kg. The closest star is Proxima Centauri with a distance of 4.22
light years (1 light year = 9.46·1015 m; 1 parsec (pc) = 3.26 light-years).
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Galaxies: The Milky Way (MW) contains about 1011 stars with masses ranging
from 1/10M� to almost 100M�. The disc of the MW has a radius of
12.5 kpc and a thickness of 0.3 kpc. The sun is about 8kpc away from
the centre and it rotates in about 200 million years around the centre.
The bulge is surrounded by globular clusters: about a million stars,
symetrically around the bulge in distances of 5pc to 30 kpc.
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The study of galaxies gives hints for the existence of dark matter

The local group: Large Magelanic cloud (50 kpc), Andromeda (770 kpc).
Typical galaxy group: V = O(Mpc3).

Galaxy clusters: O(100Mpc) - 2dF galaxy red shift survey, Sloan Digital Sky Survey:
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Virgo Cluster Centre 16Mpc away, about 1300 galaxies

Coma Cluster Centre 100Mpc away, more than 1000 identified galaxies, maybe
10000

– most galaxies do not belong to a cluster - field galaxies

Supercluster Groups of clusters, e.g. Virgo Supercluster - local group is a mem-
ber, or Coma Supercluster

Voids 50 MpC

Large scale smoothness Only recently confirmed by measurement.

2.2.3 Observations in the Non-visble Spectrum

What did we learn for other wave lengths?

Microwave: Cosmic Microwave background = afterglow of the Big Bang;
1965 accidentally discovered by Penzias and Wilson.
Black body spectrum with a temperature T = 2.725± 0.001K.
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Very precisely measured by e.g. COBE, WMAP, PLANCK - tiny
anisotropies (O(10−5) give clues about the very early Universe.

IR Look through dust (e.g. galactic plane) and at old galaxies (red-shift)

X-ray Hot gas in galaxie clusters

Radio 21cm line of Hydrogen - distribution of hydrogen in distant parts of the
Universer

All in all our Universe seems to be homogenous and isotropic.

2.2.4 Red-shift

The light of distant galaxies is red-shifted. The red shift z is defined as

z =
λobs − λem

λem
. (1)

The redshift is assumed to stem from the Doppler effect and one gets the
following relation to the velocity of the galaxy:

z =

√
1 + v

c

1− v
c

− 1 ≈ v

c
, if

v

c
� 1 . (2)
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Observation gives a linear relation velocity of the galaxy and distance of the
galaxy

~v = H0~r , (3)

with the Hubble constant H0.

For nearby galaxies the Hubble law holds of course worse - the farer a galaxy
away, the better the law holds.
The red-shift provides very strong evidence for the Big Bang theory!
Most recent determinations show some minor discrepancies in the determi-
nation of the exact value of the Hubble constant.
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2.2.5 Particles in the Universe

The energy of a particle is given as

E =
√
m2c4 + p2c2 = mc2

√
1 +

p2

m2c2
≈ mc2 +

p2

2m
, (4)

where the approximation holds for non-relativistic particles.
We find baryons in the Universe:

p = uud 938.3MeV (5)

n = ddu 939.6MeV (6)

Cosmologists include also electrons to baryons! (me = 511 keV ).
Radiation consists of photons γ propagating with c. The energy of a
photon with frequency f is given as

E = hf . (7)

Neutrinos are very weekly interacting, very light, i.e. they are treated as
relativistic particles - therfore cosmologists call them sometimes also radi-
ation! Despite its smallness, the neutrino mass might have an observable
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effect cosmological effect.
Dark matter will be discussed later.

In thermal equilibrium particles are interacting frequently and there is
a balance of forward and backward reactions. The overall distribution of
particle number and energy remains fixed.
There are different distributions for bosons and fermions. For photons we
get the Planck or black body spectrum. Each of the two photon polarisa-
tions has an occupation number per mode N :

N =
1

exp
[
hf
kbT

]
− 1

, (8)

with the Boltzmann constant kb = 1.281 · 10−23J/K = 8.619 · 10−5eV/K.
The Planck function states that photons with energies smaller than kBT can
easliy be created, but photon woth larger energies are very rare.
The energy density ε (energy per unit volume) in a frequency interval df
around f is given by

ε(f)df =
8πh

c3

f 3df

exp
[
hf
kbT

]
− 1

. (9)

The peak of this distribution is at EPeak = 2.8kBT , the mean energy of a
photon is given by EPeak = 3kBT .
For the history of the Universe it will be important how typical atomic or
nuclear binding energies compare to these energies. The overall energy is
given by

εrad =
8πk4

B

h3c3
T 4

∞∫
0

y3dy

ey − 1
=

8π5k4
B

15h3c3
T 4 = αT 4 . (10)
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3 Lecture 2: Modelling the Universe I

We 14.11.: Chapter 3,4

3.1 Newtonian Gravity

Derive the evolution of the Universe without general relativity - fill later the
loopholes.

3.1.1 Introduction

Newton:

FG =
GMm

r2
. (11)

Any force creates an acceleration according to F = ma, thus the gravitational
acceleration of a body with mass m is independent of this mass!
The exerted force can also be described by a potential

V (r) = −GMm

r
. (12)

Gravity always attracts (negative potential) and the force is in the direction
of the steepest decrease of the potential.

~F = −∇V (r) = −GMm

r2

~r

r
. (13)

Newton: in a spherical symmetric mass distribution a particle feels no effects
of all the mass at a greater radius than its distance from the origin. All the
effect of the masses from smaller radii is equivalent to a case where all this
mass is concentrated at the origin.
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3.1.2 Friedmann Equation

Most important equation in cosmology!
Standard task in cosmology = solving this equation with different assump-
tions concerning the matter content.

• Consider uniform expanding medium with mass density ρ = Mass/V olume.

• Cosmological Principle: Any point can be considered to be the centre

• Consider a particle of mass m at a distance r from the centre

18



- this feels only the effect of the mass M

M =
4

3
πr3ρ . (14)

Thus is feels the force F

F =
GMm

r2
=

4

3
Gπrmρ (15)

and it has the potential energy

V =
GMm

r
= −4

3
Gπr2mρ . (16)

• The particle has the kinetic energy

T =
1

2
mṙ2 (17)

• We get for the conserved total energy

U = T + V =
1

2
mṙ2 − 4

3
Gπr2mρ . (18)
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• Change to comoving coordinates (~x) = coordinates that are carried
along with the expansion, i.e. they are not changed by the expansion
of the Universe. The real distance ~r can be written as

~r = a(t)~x , (19)

where a(t) is the scale factor of the Universe, that depends only on
time.

U =
1

2
mȧ2x2 − 4

3
Gπa2x2mρ . (20)

ẋ = 0 by definition as objects are fixed in comoving coordinates -
multiply by 2/(ma2x2).

2U

ma2x2
=

ȧ2

a2
− 8

3
Gπρ (21)

⇒
(
ȧ

a

)2

=
8

3
Gπρ− kc2

a2
, F riedmann (22)

with kc2 = −2U/(mx2). This is the standard form of the Friedmann
Equation.

3.1.3 The Fluid Equation

In order to make use of the Friedmann equation we need to know ρ = ρ(t).

• The 1st law of thermodynamics reads

dE + pdV = TdS . (23)

• We want to apply this to an expanding volume V of unit comoving
radius a. The energy of the volume is given by

E = mc2 =
4

3
πa3ρc2 . (24)

Thus we get for the change of energy per time

dE

dt
= 4πa2ȧρc2 +

4

3
πa3ρ̇c2 . (25)

The change of volume per time is given by

dV

dt
= 4πa2ȧ . (26)
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• Having a reversible, adiabatic process (dS = 0), we can rewrite the first
law of thermodynamics as

0 =
dE

dt
+ p

dV

dt
(27)

= 4πa2ȧρc2 +
4

3
πa3ρ̇c2 + p4πa2ȧ (28)

0 = ȧρ+
1

3
aρ̇+

p

c2
ȧ (29)

⇒ ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= 0 .f luid (30)

This is the Fluid Equation.

The change of density can origin from a dilution in the density, because the
volume increases (1st term) or from a loss of energy because the pressure of
the material has done work as the volume increased (2nd term), which has
gone into the gravitational energy.
In order to solve the equations we still need an equation of state, i.e.
p = p(ρ) (see later).

3.1.4 The Acceleration Equation

Time derivative on Friedmann Equation - Eq. (22)

2
ȧ

a

(
aä− ȧ2

a2

)
=

8

3
Gπρ̇+ 2

kc2ȧ

a3
. (31)

Substitute ρ̇ from Fluid Equation - Eq.(30)

2
ȧ

a

(
aä− ȧ2

a2

)
= −8Gπ

ȧ

a

(
ρ+

p

c2

)
+ 2

kc2ȧ

a3
(32)(

aä− ȧ2

a2

)
= −4Gπ

(
ρ+

p

c2

)
+
kc2

a2
. (33)

Replace kc2/a2 via Friedmann Equation - Eq. (22)

ä

a
− ȧ2

a2
= −4Gπ

(
ρ+

p

c2

)
+

8

3
Gπρ−

(
ȧ

a

)2

(34)

ä

a
= −4Gπ

(ρ
3

+
p

c2

)
.acceleration (35)
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This is the Acceleration Equation. Any pressure increases the gravita-
tional potential and thus decelerates the expansion. This equation does not
depend on k!

3.2 Geometry of the Universe

What does k in the Friedmann equation mean?
Newton: energy per particle
Einstein (GTR): curvature of space
What geometries do fulfill isotropy and homogenity?

3.2.1 Flat Geometry = Euclidean Geometry

• A straight line is the shortest connection between two points.

• Two parallel lines stay parallel.

• Angles in a traingle sum up to 180◦.

• The circumference of a circle with radius r is given by 2πr.

A Universe with such a geometry is called a flat Universe - such a Universe
must be infinite, else there will be an edge?
A flat Universe corresponds to k = 0.

3.2.2 Spherical Geometry

Riemann = non-Euclidean
A sphere is isotropic and homogenous

• Straight lines are segments of great circles.

• Two parallel lines do not have to stay parallel.

• Angles in a traingle sum up to more than 180◦.

• The circumference of a circle with radius r is less than 2πr.

Such an Universe is finite, without having a border!
At very small scales this looks again Euclidean.
A spherical Universe corresponds to a positive value of k, it is also called a
closed Universe.
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3.2.3 Hyperbolic Geometry

• Angles in a traingle sum up to less than 180◦.

• The circumference of a circle with radius r is more than 2πr.

A hyperbolic Universe corresponds to a negative value of k, it is also called
an open Universe.

3.2.4 Infinite and Observable Universes

Observable Universe = part of the Universe we can observe: L = c · t, where
t is the age of the Universe.

3.2.5 Where did the Big Bang happen?

Everywhere!

3.2.6 Three Values of K

Use natural units and define

â =
a√
k
, (36)

⇒

(
˙̂a

â

)2

=
8

3
Gπρ± 1

â2
. (37)

Choosing the plus sign, corresponds to negative k, i.e. a closed universe; the
minus sign to an open universe and neglecting the last term to a flat universe.
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4 Lecture 3: Modelling the Universe II

Mo 19.11.: Chapter 5,6
Start with (

ȧ

a

)2

=
8

3
Gπρ− k

a2
, (38)

0 = ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
. (39)

4.1 Simple Cosmological Models

4.1.1 Hubble’s Law

The velocity of recession ~v = d~r/dt points in the same direction as the vector
~r. Thus we can write

~v =
d~r

dt
=
∣∣∣~̇r∣∣∣ ~r|~r| =

ȧ

a
~r

= H~r , (40)

with the Hubble constant

H =
ȧ

a
. (41)

Thus the Hubble constant depends on time, and the value measured today
is denoted as H0. The Friedmann equation can thus also be written as

H(t)2 =
8

3
Gπρ− k

a2
. (42)

H might be better called Hubble parameter - H is constant in space but
not in time!
?If we look at a galaxy that is 1MLyrs away, do we measure H(tnow) or
H(tnow − 1Myrs)?

4.1.2 Expansion and Redshift

z =
λobs − λem

λem
⇒ 1 + z =

λobs
λem

=
a(tobs)

a(tem)
(43)
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4.1.3 Equations of State

1. Matter: i.e. non-relativistc matter (sometimes also called dust) that
excerts negligible pressure, i.e.

p = 0

Good approximation for the atoms in a cool universe (only rare inter-
action) or for a collection of galaxies.

2. Radiation: phtons move with c, which leads to a preasure force, the
radiation pressure:

p =
ρc3

3

Also other particles moving at high velocities (e.g. neutrinos) have this
equation of state.

4.1.4 Solving the Equations for Matter with k = 0

The fluid equation gives

ρ̇+ 3
ȧ

a
ρ = 0 (44)

⇔ 1

a3

d

dt

(
ρa3
)

= 0 (45)

⇔ d

dt

(
ρa3
)

= 0 (46)

⇔ ρ =
ρ0

a3
. (47)

Unsurprising: density falls off with the volume of the Universe
For k = 0 the Friedmann equations are scale inviariant, i.e. a and ca have
the same Friedmann equations
⇒ choose a = 1 today, then ρ0 is the density today.

Inserting in the Friedmann-equation we get:(
ȧ

a

)2

=
8

3
Gπ

ρ0

a3
(48)

ȧ =

√
8Gπρ0

3

1√
a

(49)
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da
√
a =

√
8Gπρ0

3
dt (50)[

2

3
a

3
2

]t
0

=

√
8Gπρ0

3
t (51)

2

3
a

3
2 (t) =

√
8Gπρ0

3
t (52)[

3

2

√
8Gπρ0

3
t

] 2
3

= a(t) (53)

⇒ a(t)

a(t0)
= a(t) =

(
t

t0

) 2
3

. (54)

Now we have also the time evolution of the density

ρ(t) =
ρ0

a3
=
ρ0t

2
0

t2
, (55)

and the Hubble parameter

H =
ȧ

a
=

2

3

t−
1
3

t
2
3
0

t
2
3
0

t
2
3

=
2

3

1

t
. (56)

4.1.5 Solving the Equations for Radiation with k = 0

Radiations obeys p = ρc2/3 thus we get from the fluid equation

ρ̇+ 4
ȧ

a
= 0 (57)

1

a4

d

dt

(
ρa4
)

= 0 (58)

ρ =
ρ0

a4
. (59)

Inserting this in the Friedmann-equation we get:

ȧ =

√
8Gπρ0

3

1

a
(60)

da · a =

√
8Gπρ0

3
(61)
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[
1

2
a2

]t
0

=

√
8Gπρ0

3
t (62)

a(t) =

[
32Gπρ0

3

] 1
4 √

t (63)

a(t)

a(t0)
= a(t) =

(
t

t0

) 1
2

. (64)

Thus we get for the time evolution of the density

ρ =
ρ0

a4
=
ρ0t

2
0

t2
, (65)

which is identical to the matter case. For the Hubble parameter we get

H =
ȧ

a
=

1

2

t−
1
2

t
1
2
0

t
1
2
0

t
1
2

=
1

2

1

t
. (66)

4.1.6 Solving the Equations for Matter and Radiation with k = 0

Matter Radiation

ρ ρo
a3

ρo
a4

a(t)
(
t
t0

) 2
3

(
t
t0

) 1
2

ρ
ρ0t20
t2

ρ0t20
t2

H = 2
3

1
t

1
2

1
t

(67)

Having ρ = ρrad + ρmatter we can decouple the fluid equation

0 = ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
(68)

=

[
ρ̇matter + 3

ȧ

a
ρmatter

]
+

[
ρ̇rad + 4

ȧ

a
ρrad

]
. (69)

Thus we still have

ρmatter(t) =
ρ0,matter

a3
, ρrad(t) =

ρ0,rad

a4
. (70)

The Friedmann equations read thus(
ȧ

a

)2

=
8

3
Gπ
(ρ0,matter

a3
+
ρ0,rad

a4

)
(71)

⇒ ȧ =

√
8

3
Gπ
(ρ0,matter

a
+
ρ0,rad

a2

)
. (72)
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The exact solution looks messy, but we can understand its properties, by
considering the limiting cases: matter domination and radiation domination.
If radiation is dominant, then we have a(t) ∝ t

1
2 , thus

ρrad ∝
1

a4
∝ 1

t2
⇒ ln ρrad ∝ −2 ln t , (73)
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ρmatter ∝
1

a3
∝ 1

t
3
2

⇒ ln ρmatter ∝ −
3

2
ln t . (74)

If matter is dominant, then we have a(t) ∝ t
2
3 , thus

ρrad ∝
1

a4
∝ 1

t
8
3

⇒ ln ρraf ∝ −
8

2
ln t , (75)

ρmatter ∝
1

a3
∝ 1

t2
⇒ ln ρmatter ∝ −2 ln t . (76)

4.1.7 Particle Number Densities

The particle number density n is defined as

ε = ρc2 =: nE . (77)

n is useful when particle number is observed, e.g. in thermal equilibrium. In
such cases n only changes with the volume and we get

n ∝ 1

a3
. (78)
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How does this comply with our earlier results?

1. Matter: for non-relativistic matter, E is constant and given by the
mass, thus

ρ = n
E

c2
∝ 1

a3
. (79)

2. Radiation: for radiation the energy drops of like E ∝ 1/a, thus we get

ρ = n
E

c2
∝ 1

a4
. (80)

This is a nice consistency check of our formulae.

4.1.8 Evolution including Curvature

The fluid equation is the same as above and the Friedmann-equation is(
ȧ

a

)2

=
8

3
Gπρ− k

a2
, (81)

A first question that might come to ones mind is: under what circumstances
does the evolution of the Universe stop?

ȧ = 0 ⇔ 8

3
Gπρ =

k

a2
. (82)

Since ρ and a are positive, a stopping of the expansion can only happen for
positive values of k, thus an open and a flat Universe expand forever.
Since ρ ∝ 1/a3...4 we get for open universes k < 0 for very large times(

ȧ

a

)2

=
8

3
Gπρ− k

a2
≈ − k

a2
, (83)

⇒ ȧ = ±
√
−k ⇒ a = a0 ±

√
−kt . (84)

In the case of a closed universe the expansion will stop and due to the per-
sistence of the gravitational attraction, the Universe will contiue to collaps.
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Example 5.3
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Example 5.4
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Example 5.5
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4.2 Observational Parameters

4.2.1 Hubble Parameter

The Hubble parameter can be written as

H0 = 100h kms−1Mpc−1 . (85)

Current measurements give

H = 73.52± 1.62 kms−1Mpc−1 Cosmic Ladder . (86)

H = 67.8± 0.9 kms−1Mpc−1 CMB . (87)

⇒ H = 70.97± 4.17 kms−1Mpc−1 Conservative . (88)

4.2.2 The Density Parameter Ω0

The Friedmann equation reads

H2 =
8πG

3
ρ− k

a2
(89)

⇒ − k

a2
= H2 − 8πG

3
ρ . (90)

For a given value of H, we can ask what would the density have to be in
order to yield k = 0? We denote this value as the critical density ρc:

ρc =
3H2

8πG
(91)

= 1.88h2 · 10−26 kg

m3
= 9.5 · 10−27 kg

m3
(92)

= 11.3h2 protons

m3
≈ 5.7

protons

m3
(93)

= 2.78h2 · 1011 M�
Mpc3

= 1.4 · 1011 M�
Mpc3

. (94)

The density parameter Ω(t) is defined as

Ω(t) =
ρ

ρc
, (95)

the present value of Ω is denoted as Ω0. Thus we can rewrite the Friedmann
equation

H2 =
8πG

3
ρcΩ−

k

a2
= H2Ω− k

a2
(96)

⇒ 1 = Ω− k

H2a2
=: Ω + Ωk . (97)
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4.2.3 The Deceleration Parameter q0

Do a Taylor expansion of the scale factor

a(t) = a(t0) + ȧ(t0)(t− t0) + ä(t0)(t− t0)2 + . . . (98)

a(t)

a(t0)
= 1 +

ȧ(t0)

a(t0)
(t− t0) +

1

2

ä(t0)

a(t0)
(t− t0)2 + . . . (99)

= 1 +Ho(t− t0)− q0

2
H2

0 (t− t0)2 + . . . , (100)

with the decelaeration parameter

q0 = − ä(t0)

a(t0)

1

H2
0

= − ä(t0)a(t0)

ȧ2(t0)
. (101)

Remember: the acceleration equation:

ä

a
= −4Gπ

(ρ
3

+
p

c2

)
(102)

⇒ q0 = − 1

H2
0

ä0

a0

=
4Gπ

H2
0

(ρ0

3
+
p0

c2

)
(103)

=
1

2

8Gπ

3H2
0

(
ρ0 + 3

p0

c2

)
=

1

2

1

ρc

(
ρ0 + 3

p0

c2

)
(104)

=
Ω0

2
+

3

2

p0

ρcc2
. (105)

Thus we get for a matter dominated Universe (p = 0)

q0 =
Ω0

2
. (106)

BUT: q0 was measured with a negative value!!!!
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5 Lecture 4: Modelling the Universe III

We 21.11.: Chapter 7,8

5.1 The Cosmological Constant

5.1.1 Definition

Originally introduced by Einstein to get static solutions, which actually did
not exist. Later he called this his “greatest blunder”. GTR allows a cosmo-
logical constant.
2011 Nobel prize: Perlmutter, Schmidt, Riess
The Friedmann Equation including a cosmological constant reads

H2 =
8πG

3
ρ− k

a2
+

Λ

3
. (107)

• Λ is measured in [time]−2.

• Λ can be positive or negative, although mostly the positive case is
considered

• Original idea: Λ should balance k in order to get H = 0 (See Example
7.2). But such a constellation will be unstable to small perturbations.
Example 7.2
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• Nowadays: Λ > 0, k = 0 favoured.

Following the same steps (Λ̇ = 0) as in the second lecture we can derive the
acceleration equation

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (108)

A positive cosmological constant gives a positive contribution to ä and acts
thus as a kind of repulsive force. If it is large enough it can overcome the first
term of the acceleration equation, originating from density and pressure.
Defining

ΩΛ =
Λ

3H2
, (109)

we can rewrite the Friedmann equation as

Ω + ΩΛ + Ωk = 1 . (110)

5.1.2 Fluid Description of Λ

Sometimes it can be helpful to describe Λ as a fluid with density ρΛ and
pressure pΛ.
Defining

ρΛ =
Λ

8πG

(
⇒ ΩΛ =

ρΛ

ρc

)
, (111)

we can rewrite the Friedmann equation

ȧ2

a2
=

8πG

3
(ρ+ ρΛ)− k

a2
. (112)

Since ρΛ is constant by definition we change in our usual equations (Fried-
mann and Acceleration) ρ→ ρ+ ρΛ, p→ p+ pΛ and use

ρ̇Λ + 3
ȧ

a
(ρΛ + pΛ) = 0 , (113)

with pΛ = −ρΛ . (114)
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The negative pressure means that during the exansion work is done on the
cosmological constant field. Thus its energy density can stay constant, de-
spite the volume increase.
Then the acceleration equation reads

ä

a
= −4πG

3
(ρ+ ρΛ + 3(p+ pΛ)) . (115)

= −4πG

3
(ρ− 2ρΛ + 3p) (116)

= −4πG

3
(ρ+ 3p) +

8πG

3
ρΛ (117)

= −4πG

3
(ρ+ 3p) +

Λ

3
(118)

The nature of the cosmological constant is unclear.

• It might be a kind of energy of the empty space, particle theories are
predicting such a quantity, but with a value that is a factor of 10120

larger than the cosmological observation. = cosmological constant
problem

• The cosmological constant, might also be a temporarily phenomenon,
which disappears in the future.

• It could be quintessence, i.e. small variations are possible in the
constant. The quintessence fluid could have the following equation of
state

pQ = ωρQ . (119)

ω = −1 corresponds to the cosmological constant case, while acceler-
ated expansion is possible for ω < −1/3.

5.1.3 Cosmological Models with Λ

The unexpected discovery of a cosmological constant has forced physicists to
rethink some of the standard lore!
Greatly increases the possible behaviors of the Universe:

• closed universes do not necessarily recollapse.

• open universes do not necessarily expand forever.
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• if the cosmological constant is large enough, there would even be no
need for a Big Bang - the Universe could start with a collapsing phase,
followed by a bounce at finite size due to Λ (ruled out by observation).

• There could be a phase of an almost static Universe (loitering).

Look into the Ω0-ΩΛ-plane and assume that the matter in the present Uni-
verse is pressureless.

• Ω0 + ΩΛ = 1 gives a flat Universe.

• One can show that the deceleration parameter q0 reads now

q0 =
Ω0

2
− ΩΛ . (120)

Example 7.3
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The fate of the Universe

Current values of the observational parameters (from PDG)

ΩMatter = 0.306± 0.007 , (121)

ΩΛ = 0.694± 0.007 , (122)

Ω = 1.0002± 0.0026 , (123)

ω = −1.01± 0.04 . (124)
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Baryon acoustic oscillations (BAO) are fluctuations in the density of the
visible baryonic matter (normal matter) of the universe, caused by acoustic
density waves in the primordial plasma of the early universe.
BAO matter clustering provides a ”standard ruler” for length scale in cos-
mology.
The length of this standard ruler is given by the maximum distance the
acoustic waves could travel in the primordial plasma before the plasma cooled
to the point where it became neutral atoms (the epoch of recombination),
which stopped the expansion of the plasma density waves, ”freezing” them
into place.
The length of this standard ruler (about 490 million light years in today’s
universe) can be measured by looking at the large scale structure of matter
using astronomical surveys.
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Example 7.4

5.2 The age of the Universe

What is the age of the Universe t0?
Can be predicted from our cosmological models and then compared with
observational evidence.
Some approximations first: if the Universe would have always exapnded with
the same velocity as it is expanding now, then the age of the universe would
be the Hubble time

tH =
1

H0

=
9.77

h
· 109 years = 13.78 · 109 years . (125)

Different indications for the age of the universe:
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• Age of Earth: 5 billion years.

• Uranium isotopes in the galactic disc: 10 billion years.

• Old globular clusters: 10-13 (+1 for forming) billion years.

The rough agreement of these values is a strong confirmatin of the Big Bang
idea.
Let us look a little closer to our equations: if the Universe is matter domi-
nated and flat, then we got

H =
2

3

1

t
(126)

⇒ H0 =
2

3

1

t0
(127)

⇒ t0 =
2

3

1

H0

=
6.51

h
· 109 years = 9.2 · 109 years . (128)

This starts to become troublesome. If Ω0 > 0 then it becomes even worse!
What is the age of a flat Universe with a cosmological constant?

H0t0 =
2

3

1√
1− Ω0

ln

[
1 +
√

1− Ω0√
Ω0

]
(129)

=
2

3

1√
1− Ω0

sinh−1

[√
1− Ω0√

Ω0

]
. (130)
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• We get H0t0 = 1 for Ω0 = 0.26.

• For the observed value of Ω0 = 0.306 we get

H0t0 = 0.958767 (131)

t0 =
0.958767

H0

= 13.2Gyr . (132)

This can be compared to CMB investigations yielding

t0 = 13.80± 0.04Gyr . (133)
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6 Lecture 5: The Dark Side of the Universe

Mo 26.11.: Chapter 9,10

6.1 The Density of the Universe and Dark Matter

What is the value of Ω0 in the Universe?
How is Ω0 composed?

Background information in:
History of dark matter, G. Bertone and D. Hooper,
Rev. Mod. Phys. 90 (2018) no.4, 045002; arXiv:1605.04909 astro-ph
111 citations counted in INSPIRE as of 23 Nov 2018

6.1.1 Weighing the Universe

Remember:

ρc = 1.88h2 · 10−27 kg

m3
(134)

= 2.78h2 · 1011 M�
Mpc3

. (135)

1. Counting Stars

ΩStars =
ρstars
ρc
≈ 0.005 −→ 0.01 . (136)

Not all of the material in the Universe is in shinning stars; e.g. large
amounts of gas, faint low-mass stars, like brown dwarfs (Jupiters, <
0.08M�).
The Hubble telsecope did not find a sbustantial amount of brown dwarfs
- so they seem not to be very important.

2. Nucleosynthesis
Theoretical calculation of the abundance of elements in the universe
depends crucially on the baryonic matter density. The predictions agree
with observation, if

0.021 ≤ ΩBh
2 ≤ 0.025⇒


ΩB ≤ 0.025

h2
= 0.025

(0.7097−0.0417)2
= 0.056 ,

ΩB ≥ 0.021
h2

= 0.021
(0.7097+0.0417)2

= 0.037 .
(137)
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⇒ There should be much more baryonic matter, than seen in stars!

3. Galaxy rotation curves 1940 Oort, 1957 Henk van de Hulst et al,
1959 Louise Volders , lates 1960’s and 1970 Vera Rubin.

Rotation curves of galaxies:

v2

R
=

GM(R)

R2
(138)

v =

√
GM(R)

R
=



√
G4

3
πρ0 ·R inside homogeneous matter distribution

√
G4

3
πρ(R)R ∝ 1 inside dark matter halo with ρ ∝ 1

R2

√
GM 1√

R
outside matter distribution

(139)
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So there seems to be a substantial amount of matter outside the visible
disc of a galaxy. Detailed studies of rotation curves give the following
picture
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The overall amount of mater in the halo is estimated to be around

ΩHalo ≈ 0.1 . (140)

4. Galaxy Cluster Composition 1933 Zwicky
In clusters there is about 5 to 10 times as much gas as there are visible
stars, e.g. CHANDRA X-ray satellite:

Ωcluster ≈ 0.4 . (141)

Nowadays measurements are often done via gravitational lensing (strong
and weak lensing).

5. Structure Formation
Numerical simulations for the formulation of structures in the Universe,
require a sizeable dark matter component in order to be in agreement
with observation.
Small initial irregularities have to form into the observed structures like
galaxies, clusters,...
The ICC is specialised on these simulations!

Ωstructure ≈ 0.3 . (142)

6. Geometry of the Universe and Brightness of Supernovae
CMB and acceleration of the Universe... overall fit gives:

ΩMatter = 0.306± 0.007 , (143)

ΩΛ = 0.694± 0.007 , (144)

Ω = 1.0002± 0.0026 . (145)

7. Overview

Ωstars = 0.005...0.01 , (146)

ΩB = 0.037...0.056 , (147)

ΩHalo ≈ 0.1 , (148)

Ωcluster ≈ 0.4 , (149)

Ωstructure ≈ 0.3 . (150)

This means there must be a sizable amount of baronic dark matter
and non-baronic dark matter.
The baryonic DM might be gas. There is about 5 times as much non-
baryonic DM as baryonic matter.50



The cosmological constant makes the largest contribution to the total
density, which is extremely close to 1!

6.1.2 What might the Dark Matter be?

Ultimate Copernican viewpoint: we are not only in no special place in the
Universe, we are even not made out of the most abundant stuff in the Uni-
verse.

1. Fundamental Particles
Dark matter might consist of new fundamental particles:

• In the SM: neutrinos, but this would be hot dark matter and in
conflict with structure formation.

• Beyond the SM:

– Heavy neutrinos, e.g. sterile ones.
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– Lightest Supersymmetric Particle - in SUSY theories.

– or more general: WIMPs = weakly interacing massive par-
ticles.

2. Compact Objects

• Balck Holes primordial black holes that formed before nucle-
osynthesis.

• Machos (Massive compact halo objects) like brown dwarfs, but
also exotic non-baryonic objects...

The expected average DM density is

ρDM = 0.3ρc =
2 proton masses

m3
. (151)

In galaxies this density could of course be considerably higher.

6.1.3 Dark Matter searches

Gravitational lensing can be used for compact objects, but not for elementary
particles.
For elementary particles the worst case scenario would be if DM couples only
gravitationally to the SM.
If there is some kind of weak interaction with the SM particles, either directly
or via a messanger sector then we can do 3 kinds of searches:

1. Direct searches: like super CDMS - we have a replica of the DM detector
for outreach.

2. Indirect searches.

3. Collider searches.

Check also:

Yet Another Introduction to Dark Matter,
M. Bauer and T. Plehn
arXiv:1705.01987 [hep-ph].
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6.2 The Cosmic Microwave background

More detailed in Cosmology II

6.2.1 Properties of the CMB

Balck body radiation with a temperature of

T = 2.725± 0.001K . (152)

The corresponding energy density is given by

ε = ρradc
2 = αT 4 (153)(

α =
π2k4

B

15~3c3
= 7.565 · 10−16 J

m3K4

)
(154)

= 4.17 · 10−14 J

m3
. (155)

⇒ Ωrad =
ρrad
ρc

= 4.9 · 10−5 . (156)

We know how the energy density of radiation falls off during the expansion
of the universe:

ρrad ∝
1

a4
, (157)

αT 4 ∝ 1

a4
, (158)

⇒ T ∝ 1

a
. (159)

Thus at an early stage of the Universe its temperature was much higher!
The energy density ε (energy per unit volume) in a frequency interval df
around f is given by

ε(f)df =
8πh

c3

f 3df

exp
[
hf
kbT

]
− 1

. (160)

During the expansion of the Universe, the frequency f will be reduced via
f ∝ 1/a. So the numerator f 3df will scale like 1/a4 - like the expected scaling
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for radiation, the denominator will stay constant as f/T is not changing
during expansion. The temperature behaves as

Tfinal = Tinitial
ainitial
afinal

. (161)

The form of the distribution will thus stay also for times, when the photons
are not in thermal equilibrium anymore.

6.2.2 The Photon to Baryon Ratio

If interactions are negligible, then particles cannot simply disappear. During
the expansion of the Universe the number of baryons and the number of
photons stays constant and we have

n ∝ 1

a3
. (162)

Thus, the number densities of protons and photons will drop with the volume
increase. What is the photon to proton ratio?
The present energy density of the CMB is

εrad(t0) = 4.17 · 10−14
J

m3
. (163)

The typical energy of a CMB photon is

Emean = 3kBT = 7.0 · 10−4eV . (164)

Thus we get a photon number density of

nγ =
εrad(t0)

Emean
= 3.7 · 108 1

m3
. (165)

For the baryonic number density we get

nB = ΩBρc = 0.045 · 5.7protons

m3
= 0.26

protons

m3
. (166)

Thus we get for the photon to baryon ratio

nγ
nB

=
3.7 · 108 1

m3

0.26 1
m3

= 1.4 · 109 . (167)
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6.2.3 The Origin of the CMB

Consider a time, when the Universe was a factor of 106 smaller

a → a/106 , (168)

T → 106T = 3 · 10K , (169)

Eγ = 700eV , (170)

A typical photon had an energy that is much higher than the ionisation
energy of Hydrogen (13.6 eV). A this stage we had a plasma of positively
charged protons and negativly charged electrons. The photons interacted
strongly with the free electrons via Thomson scattering, thus the Universe
was more or less opaque.
During the expansion, the Universe cooled to temperatures well below 13.6 eV
and the electrons and protons formed neutral Hydrogen, which only weakly
interacts with the photons. Thus the photons decouple and the Universe
becomes transparent.
When did the decoupling happen?

a) Simple estimate:

T ≈ 13.6eV

3kB
= 52590K . (171)

(kB = 8.62 · 10−5 eV
K

.

b) More precise: we have 109 photons per proton, and we have a high
energy tail of the Boltzmann distribution

T ≈ 13.6eV

kBln(1.4 · 109)
= 7400K . (172)

c) Even more precise: integrate over Boltzmann distribution: 5700K.
(Problem 10.5)

d) More or less exact: 3000 K - thus decoupling happened when the Uni-
verse was a factor 1000 smaller than now! The Universe had an age of
about 350 000 years.

Surface of last scattering: sphere in a distance of about 6000 · h−1 Mpc.
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6.2.4 The Origin of the CMB II

More precisely, following Kolb and Turner.

1. There are two seperate processes going on:

• Recombination: electrons join nuclei to form neutral atoms.

• Decoupling: photons will not scatter again.

If recombination would be instantaneous and complete, then both would
coincide.
In practice each process takes time and decpoupling follows recombi-
nation.

2. Saha equation: computes ionization fraction of a gas in thermal equi-
librium.
Define: Ionization fraction

X :=
np
nB

, (173)

with the number of free protons np and the number of baryons nB.
The Saha equation reads

1−X
X2

≈ 3.8
nB
nγ

(
kBT

mec2

)
exp

[
13.6eV

kBT

]
. (174)

R.H.S. small ⇒ X close to 1, corresponding to full ionization.
Define recombination as Xrec = 0.1, i.e. process is 90 % completed
⇒ kBTrec ≈ 0.31eV ⇒ Trec ≈ 3600K.

3. Decoupling happens when the duration of the photon mean free path
equals the age of the Universe; the mean free paths grows much faster
than the Universe.
From that one gets tdec = 3000K.
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7 Lecture 6: How all began

We 28.11.: Chapter 11,12

7.1 The Early Universe

Start from the present and work backwards
Relativistic Particles

• Photons

Ωrad =
2.47

h2
· 10−5 . (175)

• Neutrinos are far too elusive to detect the primordial neutrino back-
ground!
If neutrinos are massless, then we get (Problem 11.1)

Ων = 3 · 7

8
·
(

4

11

) 4
3

· Ωrad = 0.68Ωrad =
1.68

h2
· 10−5 . (176)

• Adding them together we get

Ωrel =
4.15

h2
· 10−5 . (177)

Non-Relativistic Particles:

ΩNR = Ω0 = 0.3 . (178)

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
We know the time evolution of the densities:

ρrel = ρ0,rel
a4

0

a4
, (179)

ρmatter = ρ0,mat
a3

0

a3
, (180)

⇒ Ωrel

Ωmat

=
ρrel
ρmat

=
ρ0,rel

ρ0,mat

a0

a
=

4.15 · 10−5

Ω0h2

1

a
. (181)

Now we can go backwards:
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• We have seen that decoupling takes place at T = 3000K = 1000T (t0),
thus we get adec = 1/1000a(t0) = 1/1000:

⇒ Ωrel

Ωmat

=
0.04

Ω0h2
≈ 0.27 . (182)

• Matter and radiation have the same density, if

a = aeq =
4.15 · 10−5

Ω0h2
=

1

24096.4Ω0h2
≈ 1

3542
. (183)

In the epoch of matter-radiation equality we expect a temperature
of about 3542T0 = 9652K.

Now we can determine the full temperature versus time relation for the Uni-
verse!

1. Set k = 0 (observed) and Λ = 0 (good approximation in the early
Universe).

2. We have always:

T ∝ 1

a
. (184)

3. During matter dominance we have

a ∝ t
2
3 ⇒ T ∝ t−

2
3 . (185)

4. Fix the proportionality constant by assuming the age of the Universe
to 12 Gyrs (a slight underestimate to correct for the cosmological con-
stant) and the temperature to 2.725K

T

2.725K
=

(
4 · 1017s

t

) 2
3

. (186)

This equation holds for times after the matter-radiation equality of
equilvalently for temperature T < Teq.
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5. At the point of matter - radiation equality we have

Teq =
2.725K

aeq
= 65662.7Ω0h

2K = 9652K . (187)

⇒ teq =

(
2.725K

Teq

) 3
2

4 · 1017s (188)

= 1.07 · 1011s · Ω−
3
2

0 h−3
(
= 1.9 · 1012s

)
(189)

≈ 3389Ω
− 3

2
0 h−3years (= 60131years) . (190)

6. Decoupling happened at Tdec = 3000k, i.e. in the matter-dominated
epoch. Thus we can calculate the time of decoupling with our above
formula:

tdec =

(
2.725K

Tdec

) 3
2

4 · 1017s (191)

= 1.095 · 1013s (192)

≈ 346996years . (193)

7. At temperatures above Teq radiation dominates and we have

a ∝ t
1
2 ⇒ T

Teq
=

(
teq
t

) 1
2

(194)

T

65663Ω0h2K
=

(
1.07 · 1011s · Ω−

3
2

0 h−3

t

) 1
2

(195)

T

9922K
= 1.35 · 106

(
1s

t

) 1
2

(196)

T

1.34 · 1010K
=

(
1s

t

) 1
2

(197)

kBT

1.34 · 1010K
=

(
1s

t

) 1
2

(198)

kBT

1.15MeV
=

(
1s

t

) 1
2

(199)
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This result can also be directy derived from the Friedmann Equation

H2 =
8πG

3
ρ =

8πG

3
αT 4 (200)

1

4t2
=

8πG

3
ρ =

8πG

3
αT 4 (201)(

1sec

t

) 1
2

=

(
32πG

3
α

) 1
4

T (202)

=
T

1.3 · 1010K
=

kBT

1.1MeV
. (203)

Thus we have altogether

kBT

1.1MeV
=

(
1s

t

) 1
2

for t < 1.9 · 1012s . (204)

T

2.725K
=

(
4 · 1017s

t

) 2
3

for t > 1.9 · 1012s . (205)
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Francesca Calore (LAPTh - CNRS)
Title: ”Indirect dark matter searches: status and perspectives”

7.2 Nucleosynthesis

Basic facts:

• proton mpc
2 = 938.3 Mev; neutron mnc

2 = 939.6 MeV

∆ = mnc
2 −mpc

2 = 1.3 MeV . (206)

• neutrons decay via the weak decay n→ p+ e−+ ν̄e, their half-life time
is T1/2 = 610s (τ = T1/2/ ln 2 = 880s).

N(t) = N(0) exp

[
− t·

880 s

]
. (207)

There is currently an interesting decay anomaly observed

τ = ln 2T1/2 = 879.6± 0.6s (Bottle) . (208)

τ = ln 2T1/2 = 888.0± 2.0s (Beam) . (209)

see e.g. 1811.06546 - the 4 σ discrepancy, might be an indication of
dark matter!
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• Neutrons bound in a nuclei are stable. The first strongly bound nucleus
is the 4

2He with a binding energy of about 28 MeV.

The creation of 4
2He from protons proceeds via several steps

p+ n → D ; (210)

D + p → 3He ; (211)

D +D → 4He ; (212)

The binding energy of deuterium is 2.2 MeV.

Time evolution of nucleosynthesis

1. At high temperatures p and n are in equlibrium.

2. The Universe cools down until protons and neutrons are non-relativistic
but still in thermal equilibrium.
Their number density is given by the Boltzmann distribution:

N ∝ m
3
2 exp

(
−mc

2

kBT

)
. (213)
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Thus we get for the ratio of the number of neutrons and the number of
protons

Nn

Np

=

(
mn

mp

) 3
2

exp

[
−(mn −mp)c

2

kBT

]
(214)

As longs as temperatures are high this ratio is close to one - the corre-
sponding reactions are

n+ νe 
 p+ e− (215)

n+ e+ 
 p+ ν̄e (216)

3. If temperatures are approaching ∆ ≈ 1.5 · 1010K, then the ratio will
start to deviate significantly from 1. A detailed calculation of the above
reaction rates yields that the reactions are getting out of equilibrium
at kBT = 0.8 MeV (corresponds to t = 2s). At this energy we get

Nn

Np

=

(
mn

mp

) 3
2

exp

[
−(mn −mp)c

2

kBT

]
≈ 1

5
. (217)

4. After this freeze out neutrons will start to decay or be bound in nuclei
due to nucleosynthesis, via the decay chains shown above. As soon as
the energy falls below kBT = 0.06 MeV, the deuterium is not destroyed
anymore and it can proceed into fusioning in helium. kBT = 0.06 MeV
corresponds to a time of

t =

(
1.1MeV

0.06MeV

)2

≈ 340s = 5min 40s . (218)

This time is amazingly close to the lifetime of the neutron, thus slight
changes in this value would have a significant effect on primordial nu-
cleosynthesis. Hence the parameters of the Universe seem to be fine-
tuned.
At this time the ratio of the number of neutrons to the number of
protons is given as

Nn

Np

=
1

5
exp

[
−340s

880s

]
≈ 1

7.3
. (219)
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5. Now we simpliy assume that all neutrons tha exist at this time will be
bound into 4He. Then we get for the helium 4 mass density

Y4 =
4NHe

Np +Nn

=
4 · Nn

2

Np +Nn

=
2Nn

Nn +Np

=
2

1 + Np

Nn

= 0.24 .(220)

This number agrees perfectly with observation!

A more detailed treatment can be found in

V. F. Mukhanov
Nucleosynthesis without a computer
Int. J. Theor. Phys. 43 (2004) 669 [astro-ph/0303073].

Besides 4He also the abundances of D, 3He and 7Li are determined.
Most of the up-to date results are done numerically, recent overview is given
in

G. Steigman,
Primordial Nucleosynthesis in the Precision Cosmology Era
Ann. Rev. Nucl. Part. Sci. 57 (2007) 463 [arXiv:0712.1100 [astro-ph]].

All in all the comparison of observation with theoretical calculation can be
used to determine two important parameter of cosmology:
How to measure the amount of primordial 4He? Tricky, because 4He is also
produced in stars ⇒ model dependent determination of Y4.

1. The number of relativistiv degrees of freedom, in particular the number
of light neutrinos. A different value for Ωrel gives a different value
for aeq, Teq, teq and thus a different T (t) expression for the radiation
dominated Universe. By comparing observation and theory we can
extract the number of neutrino species

Nν = 2.42+0.43
−0.41 , (221)

Nnu < 3.21± 0.16 for alternative 4He abundance . (222)

The number of neutrino species was also determined at LEP.
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Yielding:

Nν = 2.984± 0.008 , (223)

2. The density of baryons from which the nuclei are composed. Our sim-
plistic model depended only on Ω0, a more detailed treatment will
depend on ΩB and yield:

0.021 ≤ ΩBh
2 ≤ 0.025 . (224)
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Nowadays - with a very high precision - some problems are arising, in
particular for 7Li and 4He; might be similar to the case of the Hubble pa-
rameter.
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8 Lecture 7: How it really began

Mo 3.12.: Chapter 13,14

8.1 The Inflationary Universe

Now we move away from well-established and understood topics in cosmology
in order to discuss the more speculative idea of inflation that was invented
in 1980/81 in order to describe the very, very early times in the Universe.
Inflation will somehow create the initial conditions for the Big Bang.

A. H. Guth,
The Inflationary Universe: A Possible Solution to the Horizon and
Flatness Problems
Phys. Rev. D 23 (1981) 347
7078 citations counted in INSPIRE as of 02 Dec 2018

A. A. Starobinsky
A New Type of Isotropic Cosmological Models Without Singularity
Phys. Lett. B 91 (1980) 99
3854 citations counted in INSPIRE as of 03 Dec 2018

8.1.1 Problems with the hot Big Bang

1. The flatness problem: We have written the Friedmann equation into
the following form

Ωmatter + ΩΛ − 1 =
k

a2H2
(225)

|Ωtot(t)− 1| =
|k|
ȧ2
. (226)

• Matter dominance:

a ∝ t
2
3 (227)

⇒ ȧ ∝ t−
1
3 (228)

⇒ |Ωtot(t)− 1| ∝ t
2
3 . (229)

• Radiation dominance:

a ∝ t
1
2 (230)
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⇒ ȧ ∝ t−
1
2 (231)

⇒ |Ωtot(t)− 1| ∝ t . (232)

Thus any deviation from Ω = 1 is growing with time. Having today
a value close to 1, means we had to have a value very close to one
in the beginning, which looks fine-tuned, except there is a dynamical
explanation why Ω = 1 or a kind of symmetry.

Fine-tuning for radiation dominated universe: In order to have
now (t0 = 4 · 1017s) |Ωtot(t0)− 1| = 0.01 we would need the following
initial conditions:

⇒ |Ωtot(t)− 1| = |Ωtot(t0)− 1| t
t0
≈ 2.5 · 10−20 t

s
. (233)

• |Ωtot(t)− 1| = 2.5 · 10−7 at decoupling (t ≈ 1013s).

• |Ωtot(t)− 1| = 2.5 · 10−8 at matter radiation equality (t ≈ 1012s).

• |Ωtot(t)− 1| = 2.5 · 10−20 at nucleosynthesis (t ≈ s).

• |Ωtot(t)− 1| = 2.5 · 10−32 at electro-weak symmetry breaking (t ≈
10−12s).

Remark: if effects of k or Λ become relevant, then our simple estimates
above will not hold anymore.

2. The horizon problem: Why is the CMB isotropic? The CMB mirco
waves coming from the front have travelled since decoupling (almost the
age of the Universe) the distance x ≈ 14GLyrs. Now the CMB from
the back of us has travelled the same distance, but in the opposite
direction. Thus the relative distance is ∆x ≈ 28GLyrs, hence the two
points cannot have been in causal contact since the Big Bang, but they
have more or less the same temperature!
More sophisticated studies show that the causally connected regions
cover only about O(1◦) of the sky. How can then the full sky be in
thermal equilibrium?

3. Relic particle abundance: GUT theories would create very heavy
particles, e.g. magnetic monopoles that freeze out extremely early and
will then dominate (Hitler-complex according to Kolb/Turner)the ex-
pansion of the Universe. There are no indiactions neither directly for
such particles nor for the indirect effects of such particles.
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8.1.2 Inflationary Expansion

INFLATION ⇔ ä(t) > 0 . (234)

Looking at the acceleration eqution

ä

a
= −4πG

3

(
ρ+

3p

c2

)
(235)

we see that inflation requires ρc2 + 3p < 0. Since densities are positive we
need negative pressure

p < −ρc
2

3
. (236)

Negative pressures can be obtained in particle physics via spontaneous sym-
metry breaking.
Remember: The cosmological constant could be described as a liquid with
p = −ρc2, yielding an exponential expansion:

a(t) = exp

[√
Λ

3
· t

]
. (237)

After some time inflation must come to an end, with the energy in the cos-
mological constant being converted into conventional matter.
Typically inflation is supposed to happen at a temperature around T = 1016

GeV (GUT scale), corresponding to t = 10−34s.

8.1.3 Solving the Big Bang Problems

1. The flatness problem:

|Ωtot(t)− 1| =
|k|
a2H2

(238)

=
3|k|
Λ

exp

[
−
√

4Λ

3
t

]
. (239)

Now Ωtot is forced to values extremely close to one! Inflation predicts
thus

ΩΛ + Ω0 = 1 , (240)

which seems to be perfectly fulfilled by observation!
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2. The horizon problem: Huge expansion of space; the current visible
universe was a tiny, causally connected region in the early universe.

3. Relic particle abundances: Huge dilution of monopoles et al.

8.1.4 How much Inflation?

How much inflation is needed (i.e. increase in the scale factor during inflation)
to explain the current universe?
Assume:

• Inflation ends at 10−34s.

• Inflation is perfectly exponential.

• After inflation the universe is radiation dominated.

• Ωtot at the beginning of inflation is not hugely different from one.

• Now we have |Ωtot(t)− 1| = 0.01.

According to our previous investigation we will need |Ωtot(t)− 1| < 2.5·10−54

at t = 10−34s. During inflation H is constant and thus

|Ωtot(t)− 1| ∝ 1

a2
. (241)

Thus we need an inflation of the scale factor by a factor of
√

2.5 · 10−54 =
1.6 · 10−27, if at the beginning of inflation, the deviation was 1.
If the characteristic expansion time H−1 is equal to 10−36s, when we get in
between the times 10−36s and 10−34s an inflation factor of

afinal
ainitial

≈ exp [H(Tfinal − tinitial] = e99 ≈ 1043 , (242)

which easily fulfills the required growth!

8.1.5 Inflation and Particle Physics

A true model of inflation will give

1. give an explanation of the origin of Λinflation
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2. give an explanation why inflation started and why it ended.

3. have taken place at higher energies than nucleosynthesis, else this would
be spoiled.
Typically physics is considered that is well above the SM of particle
physics!

A key feature are phase transitions, which are controlled by scalar fields.
Scalar fields can have negative pressure and the decay of the scalar field can
end inflation.
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8.1.6 The scalar sector in the SM
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The Higgs particle was discovered in 2012 - it is so far the only knwon fun-
damental scalar particle.

8.1.7 Temperature dependence of scalar fields
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9 Lecture 8: Inflation in more detail

9.1 GUTs

9.1.1 Introduction

Assume: at high energies (e.g.T = 1016 GeV ), i.e. in the very early Universe
(e.g.t = 10−34s), we have a bigger symmetry group G, which contains the
SM groups as subgroups (e.g. SU(5) 1974 by Georgi /Glashow). G will be
broken at the GUT scale and latest at the electro-weak scale one arrives at
the SM gauge groups.

G → G1 ×G2 × ... (243)

→ SU(3)c × SU(2)L × U(1)Y . (244)

Motivation for such an approach:

• Gauge coupling unification at about M ≈ 1015 GeV.
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• There is only one gauge interaction and thus only one gauge coupling
⇒ reduction of the number of parameter.

• Neutrino mass creation via see-saw gives a similar scale.

9.1.2 Construction of a GUT theory:

1. Choose gauge group G

2. Choose group representation for gauge bosons

3. Choose group representation for fermions

4. Chosse details for symmetry breaking
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Historically the first GUT was written down by Pati und Salam in 1973,
they considered lepton number as a fourth colour and added in addition a
right-handed SU(2). The complete symmetry group was thus a half-simple
group (product group):

SU(4)× SU(2)L × SU(2)R . (245)

The first group contains in the fundamental representation the following par-
ticles:

(ur, ug, ub, νe) , (246)

(dr, dg, d,e) , (247)

r, g, b indicate colour. SU(4) will be broken to SU(3)QCD and SU(2)L ×
SU(2)R will be broken down to SU(2)L×U(1)Y . This model will give lepto-
quarks and is currently discussed as a potential solution for the observed
flavour anomalies.

The prime candidate for a GUT theory is the SU(5) theory from Georgi
and Glashow (1974):

ad 1) SU(5): smallest simple group of rank 4, 1 which contains the SM
gauge group2 . Since we have a single gauge group there is also only
one gauge coupling gu.

Dµ = ∂µ − iguT aAaµ , (248)[
T a, T b

]
= ifabcT c , (249)

U = exp [iαaTa] . (250)

ad 2) The fundamental representation of SU(5) consists of 5x5 matrices,
which can have 50 real parameter and 25 unitarity conditions, plus
one condition due to the determinant. Thus 24 free parameter are left.
We will choose the matrices in such a way that the upper 3 × 3 block

1Rank = Maximal number of simultaneously diagonalisable generators. In the SM
there are 2 diagonal generators in SU(3)(λ3 and λ8), and one diagonal one in each SU(2)
(T3) and U(1).

2Georgi and Glashow have shown that all other groups of rank 4 have problems:
[SU(2)]4, [O(5)]2, [SU(3)]2, [G2]

2, O(8), O(9), SP8, F4.
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describes SU(3) and the lower 2× 2 block SU(2). Thus we get for the
first matrices

λa =


0 0

λa 0 0
0 0

0 0 0 0 0
0 0 0 0 0

 für a = 1, ..., 8 (251)

λa =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 σ1,2

0 0 0

 für a = 9, ..., 10 (252)

with the Gell-Mann matrices λa and the Pauli matrices σi. The relation
to the SU(5) parametern is given by

T a :=
λa

2
. (253)

Moreover the matrices are normalised

tr(λaλb) = 2δab . (254)

The first 8 generators describe gluons, the next two describe the charged
weak currents. Besides the two diagonal generators T 3 and T 8 we have
two further diagonal ones

λ11 = diag(0, 0, 0, 1,−1) , (255)

λ12 =
1√
15
diag(−2,−2,−2, 3, 3) . (256)

λ11 is the 3rd component of the weak isospin (W 3) and λ12 describes
the weak hypercharge (B).
The 12 remaining generators mix the QCD sector nontrivially with the
electro-weak one:

λ13 =


1 0

0 0 0
0 0

1 0 0 0 0
0 0 0 0 0

 6 possibilities a = 13, ..., 18 (257)
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λ19 =


i 0

0 0 0
0 0

−i 0 0 0 0
0 0 0 0 0

 6 possibilities a = 19, ..., 24(258)

These 24 matrices fulfill the SU(5)-algebra[
λa

2
,
λb

2

]
= ifabc

λc

2
, (259)

describing 24 gauge bosons: 8 gluons, 3 W-bosons, 1 B-boson and 12
new gauge bosons: 3 X and 3 Y-bosons as well as their anti-particles.
Using the notation

Aµ =
24∑
a

Aaµ
λa√

2
(260)

one can put all 24 gauge bosons in a single 5× 5 matrix.

A =


G1

1 − 2B√
30

G2
1 G3

1 X̄1 Ȳ1

G1
2 G2

2 − 2B√
30

G3
2 X̄2 Ȳ2

G1
3 G2

3 G3
3 − 2B√

30
X̄3 Ȳ3

X1 X2 X3 W 0
√

2
+ 3B√

30
W+

Y 1 y2 Y 3 W− −W 0
√

2
+ 3B√

30

 für a = 1, ..., 8

(261)
Where we have defined:

W± =
W 1 ± iW 2

√
2

, (262)

W 0 = W 3 , (263)

Gβ
α =

8∑
i=8

Giλiαβ√
2

, (264)

G1
1 +G2

2 +G3
3 = 0 . (265)

Using the definition of the adjoint representation[
λa

2
, Aµ

]
= T aAdj.Aµ (266)
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one can show that the gauge bosons are in the following representations
of SU(3)× SU(2)× U(1):

Gβ
α : (8, 1, 0) (267)

W±,W 0 : (1, 3, 0) (268)

B : (1, 1, 0) (269)

X, Y :

(
3̄, 2,−5

6

)
(270)

X̄, Ȳ :

(
3, 2̄,+

5

6

)
(271)

ad 3) SU(5) has e.g. 5- and 10-dimensional irreducible representations. How
can the SM particles be implemented in to that?
Under SU(3)c × SU(2)L × U(1)Y we have

QL : (3, 2, 1
6
)L (3, 2, 1

6
)L

uR : (3, 1, 2
3
)R (3̄, 1,−2

3
)L

dR : (3, 1,−1
3
)R ⇒ (3̄, 1,+1

3
)L

LL : (1, 2,−1
2
)L (1, 2,−1

2
)L

eR : (1, 1,−1)R (1, 1, 1)L

(272)

In the second column we express everything in terms of left-handed
spinors.
The fundamental (5-dimensional) representation of SU(5) is denoted
as

ψµ =

(
ψα

ψi

)
(273)

with µ = 1, 2, ..., 5, α = 1, 2, 3 and i = 1, 2. According to our above
construction of the SU(5) matrices, SU(3) is only acting on the α-
components and SU(2) only on the i-components; hence ψα is a 3
dimensional representation of SU(3), i.e. 3 or 3̄ and ψi is a 2 dimen-
sional representation of SU(2), i.e. 2. If one normalises the generator
T 12 properly, one gets for the hyper charge

Y

2
= diag

(
−1

3
,−1

3
,−1

3
,
1

2
,
1

2

)
(274)

and one finds

ψα =

(
3, 1,−1

3

)
ψi =

(
1, 2,

1

2

)
. (275)
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Thus we get for the fundamental representation of SU(5) under the
SM gauge group

5 ≡
(

3, 1,−1

3

)
⊕
(

1, 2,+
1

2

)
, (276)

5̄ ≡
(

3̄, 1,+
1

3

)
⊕
(

1, 2,−1

2

)
. (277)

(Remark: SU(2) does not have an independent conjugate representa-
tion). All in all we have now put 5 SM particles into the fundamental
SU(5) representation:

5̄ = d̄R, L̄L . (278)

Do the missing 10 SM particles fit into the 10 dimensional represen-
tation? Having the above decomposition for 5, one can show that the
10-dimensional antisymmetric tensor representation has the following
decomposition

10 ≡
(

3̄, 1,−2

3

)
⊕
(

3, 2,
1

6

)
⊕ (1, 1, 1) (279)

≡ ūR, QL, ēR (280)

≡ (ψαβ, ψαi, ψij) (281)

ψµν =


0 ū −ū d u
−ū 0 ū d u
ū −ū 0 d u
−d −d −d 0 ē
−u −u −u −ē 0

 (282)

What a wonderful world!

1. All SM particles fit into the 5̄ and 10 of SU(5) with correct quan-
tum numbers!

2. All anomalies cancel.

3. Charge quanitsation: hypercharge is now fixed. Applying TrQ =
Tr(T3 + Y

2
) = 0 to 5̄ one finds Qd̄ = −1

3
Qe!

What a wonderful world?
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1. Leptons and quarks are in the same multiplet, thus the heavy
gauge bosons form Leptoquarks!
X-Bosons: transitions among 1-3 and 4, i.e. d̄ and ν; charge 1

3
.

Y -Bosons: transitions among 1-3 and 5, i.e. d̄ and e+; charge 4
3
.

The coupling term for the fermions in the 5̄ (ψi) and 10 (χij)
represenatation to the 24 gauge bosons can be written as

gψ̄γµATµψ + gTr [χ̄γµ {Aµ, χ}] = − g√
2
W †
µ(ν̄γµe+ uαγ

µdα)

+
g√
2
Xa
µα

[
εαβγūcγqβα[
εab
(
q̄αbγ

µe+ − l̄bγµdcα
)]
.

(283)

Besides the SM interactions we have also the following transitions

Transition ∆B Force carrier
X → u+ u 2

3
Diquark

Y → u+ l−, d̄+ ν 1
3

Leptoquark

2. Leptoquarks and Diquarks can induce proton decay

τp ≈
1

αGUT

M4
X

m5
p

=
4π

g2
U

M4
X

m5
p

. (284)

This is seriously constrained by experiment

τp(p→ e+ + π0) > 1033 a , (285)

which excludes the minimal SU(5) non-SUSY-GUT.

3. Relations among coupling constants: in the SM we have

Dµ = ∂µ + igs

8∑
α=1

Gα
µ

λα

2
+ ig

3∑
r=1

W r
µ

σr

2
+ ig′Bµ

Y

2
. (286)

In SU(5) we have

Dµ = ∂µ + igu

24∑
α=1

Aαµ
λα

2
(287)

= ∂µ + igu

8∑
α=1

Aαµ
λα

2
+ igu

11∑
α=9

Aαµ
λα

2
+ iguA

12
µ

λ12

2
+ igu

24∑
α=12

Aαµ
λα

2
.

(288)
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Since the Gell-Mann matrices, the Pauli-matrices are normalised
in the same way as the SU(5) matrices (tr(λaλb = 2δab), we get
at the unification scale

g5 = gs = g3 . (289)

g5 = g = g2 . (290)

A similar relation for the U(1) coupling is not so obvious, we have

ig1λ
12A12

µ = ig′Y Bµ . (291)

Y is in principle free as its value can be compensated g′, 2λ12 is
fixed via the normalisation of the SU(5) matrices and one gets

g1 =

√
5

3
g′ . (292)

In terms of the weak angle we this becomes

tan θW =
g′

g
=

√
3
5
g1

g2

√
3

5
, (293)

⇒ sin2 θW =
3

8
= 0.375 vs.0.22− 0.23 . (294)

4. So far there is no space for a right handed neutrino, it could be
implemented via an additional singlet representation.

ad 4) Higgs mechanism: consider two Higgs multiplets acquiring non-vanishing
VEVs at different times:

SU(5)
v1−→ SU(3)c × SU(2)L × U(1)y

v2−→ SU(3)c × U(1)Q . (295)

v1 � v2 yiels MX,Y � MW,Z ; proton decay and coupling unification
point towards MX ≈ O1015 GeV.
In the minimal SU(5) model the scalars H i

j are in the adjoint (24)
representation of SU(5) and the scalars φi are in the vector represen-
tation(5) - one could in principle also use larger representations.
The most general SU(5)-invariant potential3 of order 4 reads

V (H,φ) = V (H) + V (φ) + λ4(trH2)(φ†φ) + λ5(φ†H2φ) , (296)

V (H) = −m2
1(trH2) + λ1(trH2)2 + λ2(trH4) , (297)

V (φ) = −m2
2(φ†φ) + λ3(φ†φ)2 . (298)

3We postulated an additional discrete symmetry H → −H and φ → −φ to get rid of
cubic terms.
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We have now 7 parameter λ1, ..., λ5,m1,m2, compared to 2 in the SM.
Thus the orginal idea of reducing the number of parameter will not
work any more

(g1, g2, g3, µ, λ) → (gU , λ1, ..., λ5,m1,m2) , (299)

3 + 1 → 1 + 7 . (300)

1st symmetry breaking: One can show: for λ2 > 0 and λ1 >
−7/30λ2), V (H) has an extremum at H = 〈H〉.

〈H〉 = v1 Diag(2, 2, 2,−3,−3) , (301)

v2
1 =

m2
1

60λ1 + 14λ2

. (302)

After the first SSB we get the following mass parameter:

Scalar SU(3)× SU(2)Representation Mass2

(H8)αβ (8, 1) 20λ2v
2
1

(H3)rs (1, 2) 80λ2v
2
1

H0 (1, 1) 4m2
1

(HXα, HY α) (3, 2) 0

(H†Xα, H
†
Y α) (3̄, 2) 0

The 12 massless HX,Y are pseudo-Goldstone bosons and will become
the longitudinal degrees of freedom of the 12 X, Y bosons with the
mass

Mx = MY =

√
25

2
gv1 . (303)

The couplings λ4 and λ5 influence φ = φt(3, 1), φd(1, 2) and we get the
masses

m2
t = −m2

2 + (30λ4 + 4λ5)v2
1 , (304)

m2
d = −m2

2 + (30λ4 + 9λ5)v2
1 . (305)

2nd symetry breaking: could be provided by the doublett φd.
Assuming md � V1, we get

Veff (φd) = −m2
dφ
†
dφd + λ3

(
φ†dφd

)2

(306)
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and

〈φd〉 =
1√
2

(
0

v2

)
, (307)

v2 =

√
m2
d

λ3

≈ 250 GeV . (308)

Now the fermion masses can also be created via Yukawa coupling.

f
(1)
AB(χA,ij)

TC(χB,kl)φmε
ijklm + f

(2)
AB(χA,ij)

TCψiBφ
j†εijklm + h.c. (309)

ψ is the 5̄ and χ the 10 representation of the fermions.
In the minimal model we get a relation among the masses of leptons
and down like quarks

me = md , (310)

mµ = ms , (311)

mτ = mb . (312)

Inlcuding radiative corrections one gets

mb ≈ 3mτ = 5.3GeV , (313)

which is already quite close to reality.

Non one can try to tune the non-fixed parameter of the Higgs potential to
fulfill the requirements of inflation.
Cartan investigated all groups with rank larger than 4. Fritzsch and Minkowski
found in 1974 that SO(10) contains a 16 dimension spinor representation that
could also contain the right-handed neutrino.

SO(10) → SU(5)⊗ U(1)→ SM , (314)

16 → 1⊕ 5̄⊕ 10→ SM . (315)

Further possiblities include E6, E7, E8. String theory might indicate E8 ×
E8 → E6 → SO(10)

88



9.2 The scalar sector in cosmology

Now we are coming back to cosmology and check what further requrements
we will have on our scalar fields. The Stress tensor of a scalar field reads

Tµν = ∂µφ∂νφ−
gµν
2
∂ρφ∂

ρφ+ gµνV (φ) . (316)

Taking φ to be constant, i.e. φ = 〈φ〉, then all derivatives are vanishing and
we get

Tµν = gµνV (〈φ〉) , (317)

〈T00〉 = −m
4

4λ
= ρV . (318)

In the current universe the vacuum energy is

ρΛ = 0.7ρc = 0.7 · 9.5 · 10−27 kg

m3
(319)

= 2.9 · 10−11eV 4 . (320)

From the stress tensor we can derive the density ρ and the pressure p

ρ = T00 =
φ̇2

2
+
∇φ2

2a2
+ V (φ) , (321)

p =
Tii
a2(t)

=
φ̇2

2
− ∇φ

2

6a2
− V (φ) . (322)

In a homogoenous background this reduces to

ρ = T00 =
φ̇2

2
+ V (φ) , (323)

p =
Tii
a2(t)

=
φ̇2

2
− V (φ) . (324)

2 special cases

1. no potential ⇒ ρ = p = φ̇2

2
≡ stiff fluid

2. no time dependence ⇒ p = −ρ = V (φ) ≡ cosmological constant
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Thus the Friedmann Equation reads

H2 =
8πG

3

[
φ̇2

2
+ V (φ)

]
− k

a2
. (325)

Inserting ρ into the fluid equation we get

ρ̇ = −3H(ρ+ p) (326)

2
φ̈φ̇

2
+ V ′φ̇ = −3H

(
φ̇2

2
+ V (φ) +

φ̇2

2
− V (φ)

)
(327)

⇒ φ̈ = −3Hφ̇− V ′ , (328)

where the first term describes damping and the second one drives evolution.
This describes a ball running downhill with friction.
In order to provide a sufficiently long period of inflationary expansion (in-
crease of the scale factor by about e100) we must ensure that the transitition
between the two vacua is long enough - this leads to the slow roll scenarios.
We can define the slow roll parameter

ε =
1

16πG

(
V ′

V

)2

, (329)

η =
1

8πG

V ′′

V
. (330)

Nowadays more often used

ε1 = − Ḣ

H2
≈ ε (331)

ε2 = − ε̇1
Hε1

≈ 4ε− 2η (332)

ε3 = − ε̇2
Hε2

(333)

If ε, η � 1 we can neglect φ̈ and work with the slow roll equation of motion

3Hφ̇ = −V ′ . (334)

Show:

Ω− 1 =
k

H2a2
(335)

dΩ

da
= (1 + 3w)

Ω(Ω− 1)

a
(336)
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Finally: Quantum fluctuation of the scalar field can be the origin of density
fluctuations.

9.3 Higgsinflation

But also the SM Higgs is considered as being a candidate for the iunflation:
Higgsinflation (review 1807.02376)
F. L. Bezrukov and M. Shaposhnikov,
The Standard Model Higgs boson as the inflaton
Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755 [hep-th]].
1167 citations counted in INSPIRE as of 04 Dec 2018

Problem: making inflation sufficiently long without creating too large density
perturbations

9.4 The Initial Singularity

Hawking and Penrose have proven in 1970 that under strong energy condition

ρc2 + 3p ≥ 0 (337)

there was an initial singularity.
Nowadays situation less clear:

1. We have a cosmological constant, i.e. p = −ρ!

2. For very early times a theory of Quantum Gravity has to be considered!

EPl =

√
~c5

G
= 1.22 · 1019GeV , (338)

G =
1

m2
Pl

in natural units , (339)

tPl =

√
~G
c5

= 5.39 · 10−44s . (340)
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